Jump to content

Recommended Posts

Posted
low_STSCI-H-p9522a-k-1340x520.png

NASA's Hubble Space Telescope has helped solve a two-decade-old cosmic mystery by showing that mysterious clouds of hydrogen in space may actually be vast halos of gas surrounding galaxies.

"This conclusion runs contrary to the longstanding belief that these clouds occur in intergalactic space," says Ken Lanzetta of the State University of New York at Stony Brook.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 2 min read
      Hubble Images a Peculiar Spiral
      This NASA/ESA Hubble Space Telescope image features a peculiar spiral galaxy called Arp 184 or NGC 1961. ESA/Hubble & NASA, J. Dalcanton, R. J. Foley (UC Santa Cruz), C. Kilpatrick A beautiful but skewed spiral galaxy dazzles in this NASA/ESA Hubble Space Telescope image. The galaxy, called Arp 184 or NGC 1961, sits about 190 million light-years away from Earth in the constellation Camelopardalis (The Giraffe).
      The name Arp 184 comes from the Atlas of Peculiar Galaxies compiled by astronomer Halton Arp in 1966. It holds 338 galaxies that are oddly shaped and tend to be neither entirely elliptical nor entirely spiral-shaped. Many of the galaxies are in the process of interacting with other galaxies, while others are dwarf galaxies without well-defined structures. Arp 184 earned its spot in the catalog thanks to its single broad, star-speckled spiral arm that appears to stretch toward us. The galaxy’s far side sports a few wisps of gas and stars, but it lacks a similarly impressive spiral arm.
      This Hubble image combines data from three Snapshot observing programs, which are short observations that slotted into time gaps between other proposals. One of the three programs targeted Arp 184 for its peculiar appearance. This program surveyed galaxies listed in the Atlas of Peculiar Galaxies as well as A Catalogue of Southern Peculiar Galaxies and Associations, a similar catalog compiled by Halton Arp and Barry Madore.
      The remaining two Snapshot programs looked at the aftermath of fleeting astronomical events like supernovae and tidal disruption events — like when a supermassive black hole rips a star apart after it wanders too closely. Since Arp 184 hosted four known supernovae in the past three decades, it is a rich target for a supernova hunt.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated May 01, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Spiral Galaxies The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Galaxies



      Tracing the Growth of Galaxies



      Reshaping Our Cosmic View: Hubble Science Highlights


      View the full article
    • By NASA
      Did you know some of the brightest sources of light in the sky come from the regions around black holes in the centers of galaxies? It sounds a little contradictory, but it’s true! They may not look bright to our eyes, but satellites have spotted oodles of them across the universe. 
      One of those satellites is NASA’s Fermi Gamma-ray Space Telescope. Fermi has found thousands of these kinds of galaxies since it launched in 2008, and there are many more out there!
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      Watch a cosmic gamma-ray fireworks show in this animation using just a year of data from the Large Area Telescope (LAT) aboard NASA’s Fermi Gamma-ray Space Telescope. Each object’s magenta circle grows as it brightens and shrinks as it dims. The yellow circle represents the Sun following its apparent annual path across the sky. The animation shows a subset of the LAT gamma-ray records available for more than 1,500 objects in a continually updated repository. Over 90% of these sources are a type of galaxy called a blazar, powered by the activity of a supermassive black hole. NASA’s Marshall Space Flight Center/Daniel Kocevski Black holes are regions of space that have so much gravity that nothing — not light, not particles, nada — can escape. Most galaxies have supermassive black holes at their centers, and these black holes are hundreds of thousands to billions of times the mass of our Sun. In active galactic nuclei (also called “AGN” for short, or just “active galaxies”) the central region is stuffed with gas and dust that’s constantly falling toward the black hole. As the gas and dust fall, they start to spin and form a disk. Because of the friction and other forces at work, the spinning disk starts to heat up.
      This composite view of the active galaxy Markarian 573 combines X-ray data (blue) from NASA’s Chandra X-ray Observatory and radio observations (purple) from the Karl G. Jansky Very Large Array in New Mexico with a visible light image (gold) from the Hubble Space Telescope. Markarian 573 is an active galaxy that has two cones of emission streaming away from the supermassive black hole at its center. X-ray: NASA/CXC/SAO/A.Paggi et al; Optical: NASA/STScI; Radio: NSF/NRAO/VLA The disk’s heat gets emitted as light, but not just wavelengths of it that we can see with our eyes. We detect light from AGN across the entire electromagnetic spectrum, from the more familiar radio and optical waves through to the more exotic X-rays and gamma rays, which we need special telescopes to spot.
       
      In the heart of an active galaxy, matter falling toward a supermassive black hole creates jets of particles traveling near the speed of light as shown in this artist’s concept. NASA/Goddard Space Flight Center Conceptual Image Lab About one in 10 AGN beam out jets of energetic particles, which are traveling almost as fast as light. Scientists are studying these jets to try to understand how black holes — which pull everything in with their huge amounts of gravity — somehow provide the energy needed to propel the particles in these jets.
      This artist’s concept shows two views of the active galaxy TXS 0128+554, located around 500 million light-years away. Left: The galaxy’s central jets appear as they would if we viewed them both at the same angle. The black hole, embedded in a disk of dust and gas, launches a pair of particle jets traveling at nearly the speed of light. Scientists think gamma rays (magenta) detected by NASA’s Fermi Gamma-ray Space Telescope originate from the base of these jets. As the jets collide with material surrounding the galaxy, they form identical lobes seen at radio wavelengths (orange). The jets experienced two distinct bouts of activity, which created the gap between the lobes and the black hole. Right: The galaxy appears in its actual orientation, with its jets tipped out of our line of sight by about 50 degrees. NASA’s Goddard Space Flight Center Many of the ways we tell one type of AGN from another depend on how they’re oriented from our point of view. With radio galaxies, for example, we see the jets from the side as they’re beaming vast amounts of energy into space. Then there’s blazars, which are a type of AGN that have a jet that is pointed almost directly at Earth, which makes the AGN particularly bright. 
      Blazar 3C 279’s historic gamma-ray flare in 2015 can be seen in this image from the Large Area Telescope on NASA’s Fermi satellite. During the flare, the blazar outshone the Vela pulsar, usually the brightest object in the gamma-ray sky. NASA/DOE/Fermi LAT Collaboration Fermi has been searching the sky for gamma ray sources since 2008. More than half of the sources it has found have been blazars. Gamma rays are useful because they can tell us a lot about how particles accelerate and how they interact with their environment.
      So why do we care about AGN? We know that some AGN formed early in the history of the universe. With their enormous power, they almost certainly affected how the universe changed over time. By discovering how AGN work, we can understand better how the universe came to be the way it is now.
      Share








      Details
      Last Updated Apr 30, 2025 Related Terms
      The Universe Active Galaxies Fermi Gamma-Ray Space Telescope Galaxies Explore More
      8 min read How to Contribute to Citizen Science with NASA


      Article


      24 hours ago
      6 min read Where Does Gold Come From? NASA Data Has Clues


      Article


      1 day ago
      2 min read Hubble Visits Glittering Cluster, Capturing Its Ultraviolet Light


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      Galaxies



      Black Holes



      Telescopes 101



      Fermi


      View the full article
    • By NASA
      ESA/Hubble & NASA, L. C. Ho, D. Thilker Today’s rather aquatic-themed NASA/ESA Hubble Space Telescope image features the spiral galaxy Messier 77, also known as the Squid Galaxy, which sits 45 million light-years away in the constellation Cetus (The Whale).
      The designation Messier 77 comes from the galaxy’s place in the famous catalog compiled by the French astronomer Charles Messier. Another French astronomer, Pierre Méchain, discovered the galaxy in 1780. Both Messier and Méchain were comet hunters who cataloged nebulous objects that could be mistaken for comets.
      Messier, Méchain, and other astronomers of their time mistook the Squid Galaxy for either a spiral nebula or a star cluster. This mischaracterization isn’t surprising. More than a century would pass between the discovery of the Squid Galaxy and the realization that the ‘spiral nebulae’ scattered across the sky were not part of our galaxy but were in fact separate galaxies millions of light-years away. The Squid Galaxy’s appearance through a small telescope — an intensely bright center surrounded by a fuzzy cloud — closely resembles one or more stars wreathed in a nebula.
      The name ‘Squid Galaxy’ is recent, and stems from the extended, filamentary structure that curls around the galaxy’s disk like the tentacles of a squid. The Squid Galaxy is a great example of how advances in technology and scientific understanding can completely change our perception of an astronomical object — and even what we call it!
      Hubble previously released an image of M77 in 2013. This new image incorporates recent observations made with different filters and updated image processing techniques which allow astronomers to see the galaxy in more detail.
      View the full article
    • By NASA
      3 min read
      Help Classify Galaxies Seen by NASA’s James Webb Space Telescope!
      The Galaxy Zoo classification interface shows you an image from NASA’s Webb telescope and asks you questions about it. Image credit: Galaxy Zoo, Zooniverse. Inset galaxy: NASA/STScI/CEERS/TACC/S. Finkelstein/M. Bagley/Z. Levay/A. Pagan NASA needs your help identifying the shapes of thousands of galaxies in images taken by our James Webb Space Telescope with the Galaxy Zoo project. These classifications will help scientists answer questions about how the shapes of galaxies have changed over time, what caused these changes, and why. Thanks to the light collecting power of Webb, there are now over 500,000 images of galaxies on website of the Galaxy Zoo citizen science project—more images than scientists can classify by themselves. 
      “This is a great opportunity to see images from the newest space telescope,” said volunteer Christine Macmillan from Aberdeen, Scotland. “Galaxies at the edge of our universe are being seen for the first time, just as they are starting to form. Just sign up and answer simple questions about the shape of the galaxy that you are seeing. Anyone can do it, ages 10 and up!”  
      As we look at more distant objects in the universe, we see them as they were billions of years ago because light takes time to travel to us. With Webb, we can spot galaxies at greater distances than ever before. We’re seeing what some of the earliest galaxies ever detected look like, for the first time. The shapes of these galaxies tell us about how they were born, how and when they formed stars, and how they interacted with their neighbors. By looking at how more distant galaxies have different shapes than close galaxies, we can work out which processes were more common at different times in the universe’s history.   
      At Galaxy Zoo, you’ll first examine an image from the Webb telescope. Then you will be asked several questions, such as ‘Is the galaxy round?’, or ‘Are there signs of spiral arms?’. If you’re quick, you may even be the first person to see the galaxies you’re asked to classify.  
      “I’m amazed and honored to be one of the first people to actually see these images! What a privilege!” said volunteer Elisabeth Baeten from Leuven, Belgium.
      Galaxy Zoo is a citizen science project with a long history of scientific impact. Galaxy Zoo volunteers have been exploring deep space since July 2007, starting with a million galaxies from a telescope in New Mexico called the Sloan Digital Sky Survey and then, moving on to images from space telescopes like NASA’s Hubble Space Telescope and ESA (European Space Agency)’s Euclid telescope. The project has revealed spectacular mergers, taught us about how the black holes at the center of galaxies affect their hosts, and provided insight into how features like spiral arms form and grow.  
      Now, in addition to adding new data from Webb, the science team has incorporated an AI algorithm called ZooBot, which will sift through the images first and label the ‘easier ones’ where there are many examples that already exist in previous images from the Hubble Space Telescope. When ZooBot is not confident on the classification of a galaxy, perhaps due to complex or faint structures, it will show it to users on Galaxy Zoo to get their human classifications, which will then help ZooBot learn more. Working together, humans and AI can accurately classify limitless numbers of galaxies. The Galaxy Zoo science team acknowledges support from the International Space Sciences Institute (ISSI), who provided funding for the team to get together and work on Galaxy Zoo. Join the project now.  
      Share








      Details
      Last Updated Apr 29, 2025 Related Terms
      Astrophysics Division Citizen Science Get Involved James Webb Space Telescope (JWST) Explore More
      2 min read Hubble Visits Glittering Cluster, Capturing Its Ultraviolet Light


      Article


      4 days ago
      5 min read Eye on Infinity: NASA Celebrates Hubble’s 35th Year in Orbit


      Article


      6 days ago
      3 min read Nine Finalists Advance in NASA’s Power to Explore Challenge


      Article


      6 days ago
      View the full article
    • By NASA
      This artist’s concept depicts a magnetar – a type of neutron star with a strong magnetic field – losing material into space. Shown as thin green lines, the magnetic field lines influence the movement of charged material around the magnetar. NASA/JPL-Caltech Since the big bang, the early universe had hydrogen, helium, and a scant amount of lithium. Later, some heavier elements, including iron, were forged in stars. But one of the biggest mysteries in astrophysics is: How did the first elements heavier than iron, such as gold, get created and distributed throughout the universe?
      “It’s a pretty fundamental question in terms of the origin of complex matter in the universe,” said Anirudh Patel, a doctoral student at Columbia University in New York. “It’s a fun puzzle that hasn’t actually been solved.”
      Patel led a study using 20-year-old archival data from NASA and ESA telescopes that finds evidence for a surprising source of a large amount of these heavy elements: flares from highly magnetized neutron stars, called magnetars. The study is published in The Astrophysical Journal Letters.
      Study authors estimate that magnetar giant flares could contribute up to 10% of the total abundance of elements heavier than iron in the galaxy. Since magnetars existed relatively early in the history of the universe, the first gold could have been made this way.
      “It’s answering one of the questions of the century and solving a mystery using archival data that had been nearly forgotten,” said Eric Burns, study co-author and astrophysicist at Louisiana State University in Baton Rouge.
      How could gold be made at a magnetar?
      Neutron stars are the collapsed cores of stars that have exploded. They are so dense that one teaspoon of neutron star material, on Earth, would weigh as much as a billion tons. A magnetar is a neutron star with an extremely powerful magnetic field.
      On rare occasions, magnetars release an enormous amount of high-energy radiation when they undergo “starquakes,” which, like earthquakes, fracture the neutron star’s crust. Starquakes may also be associated with powerful bursts of radiation called magnetar giant flares, which can even affect Earth’s atmosphere. Only three magnetar giant flares have been observed in the Milky Way and the nearby Large Magellanic Cloud, and seven outside.
      Patel and colleagues, including his advisor Brian Metzger, professor at Columbia University and senior research scientist at the Flatiron Institute in New York, have been thinking about how radiation from giant flares could correspond to heavy elements forming there. This would happen through a “rapid process” of neutrons forging lighter atomic nuclei into heavier ones.   
      Protons define the element’s identity on the periodic table: hydrogen has one proton, helium has two, lithium has three, and so on. Atoms also have neutrons which do not affect identity, but do add mass. Sometimes when an atom captures an extra neutron the atom becomes unstable and a nuclear decay process happens that converts a neutron into a proton, moving the atom forward on the periodic table. This is how, for example, a gold atom could take on an extra neutron and then transform into mercury. 
      In the unique environment of a disrupted neutron star, in which the density of neutrons is extremely high, something even stranger happens: single atoms can rapidly capture so many neutrons that they undergo multiple decays, leading to the creation of a much heavier element like uranium.
      When astronomers observed the collision of two neutron stars in 2017 using NASA telescopes and the Laser Interferomete Gravitational wave Observatory (LIGO), and numerous telescopes on the ground and in space that followed up the initial discovery, they confirmed that this event could have created gold, platinum, and other heavy elements. But neutron star mergers happen too late in the universe’s history to explain the earliest gold and other heavy elements. Recent research by co-authors of the new study — Jakub Cehula of Charles University in Prague, Todd Thompson of The Ohio State University, and Metzger — has found that magnetar flares can heat and eject neutron star crustal material at high speeds, making them a potential source.
      A rupture in the crust of a highly magnetized neutron star, shown here in an artist’s rendering, can trigger high-energy eruptions. Credit: NASA’s Goddard Space Flight Center/S. Wiessinger New clues in old data
      At first, Metzger and colleagues thought that the signature from the creation and distribution of heavy elements at a magnetar would appear in the visible and ultraviolet light, and published their predictions. But Burns in Louisiana wondered if there could be a gamma-ray signal bright enough to be detected, too. He asked Metzger and Patel to check, and they found that there could be such a signature.
      “At some point, we said, ‘OK, we should ask the observers if they had seen any,’” Metzger said.
      Burns looked up the gamma ray data from the last giant flare that has been observed, which was in December 2004. He realized that while scientists had explained the beginning of the outburst, they had also identified a smaller signal from the magnetar, in data from ESA (European Space Agency)’s INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), a recently retired mission with NASA contributions. “It was noted at the time, but nobody had any conception of what it could be,” Burns said.
      Metzger remembers that Burns thought he and Patel were “pulling his leg” because the prediction from their team’s model so closely matched the mystery signal in the 2004 data. In other words, the gamma ray signal detected over 20 years ago corresponded to what it should look like when heavy elements are created and then distributed in a magnetar giant flare.
      Patel was so excited, “I wasn’t thinking about anything else for the next week or two. It was the only thing on my mind,” he said.
      Researchers supported their conclusion using data from two NASA heliophysics missions: the retired RHESSI (Reuven Ramaty High Energy Solar Spectroscopic Imager) and the ongoing NASA’s Wind satellite, which had also observed the magnetar giant flare. Other collaborators on the new study included Jared Goldberg at the Flatiron Institute.
      Next steps in the magnetar gold rush
      NASA’s forthcoming COSI (Compton Spectrometer and Imager) mission can follow up on these results. A wide-field gamma ray telescope, COSI is expected to launch in 2027 and will study energetic phenomena in the cosmos, such as magnetar giant flares. COSI will be able to identify individual elements created in these events, providing a new advancement in understanding the origin of the elements. It is one of many telescopes that can work together to look for “transient” changes across the universe.
      Researchers will also follow up on other archival data to see if other secrets are hiding in observations of other magnetar giant flares.
      “It very cool to think about how some of the stuff in my phone or my laptop was forged in this extreme explosion of the course of our galaxy’s history,” Patel said.
      Media Contact
      Elizabeth Landau
      Headquarters, Washington
      202-358-0845
      elandau@nasa.gov
      View the full article
  • Check out these Videos

×
×
  • Create New...