Members Can Post Anonymously On This Site
Hubble Data Suggest Galaxies Have Giant Halos
-
Similar Topics
-
By NASA
Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 2 min read
Hubble Comes Face-to-Face with Spiral’s Arms
This Hubble Space Telescope image showcases the spiral galaxy NGC 3596. ESA/Hubble & NASA, D. Thilker The spiral galaxy NGC 3596 is on display in this NASA/ESA Hubble Space Telescope image that incorporates six different wavelengths of light. NGC 3596 is situated 90 million light-years from Earth in the constellation Leo, the Lion. British astronomer Sir William Herschel first documented the galaxy in 1784.
NGC 3596 appears almost perfectly face-on when viewed from Earth, showcasing the galaxy’s neatly wound spiral arms. These bright arms hold concentrations of stars, gas, and dust that mark the area where star formation is most active, illustrated by the brilliant pink star-forming regions and young blue stars tracing NGC 3596’s arms.
What causes these spiral arms to form? It’s a surprisingly difficult question to answer, partly because spiral galaxies are so diverse. Some have clear spiral arms, while others have patchy, feathery arms. Some have prominent bars across their centers, while others have compact, circular nuclei. Some have close neighbors, while others are isolated.
Early ideas of how spiral arms formed stumped astronomers with the ‘winding problem’. If a galaxy’s spiral arms are coherent structures, its arms would wind tighter and tighter as the galaxy spins, until the arms are no longer visible. Now, researchers believe that spiral arms represent a pattern of high-density and low-density areas rather than a physical structure. As stars, gas, and dust orbit within a galaxy’s disk, they pass in and out of the spiral arms. Much like cars moving through a traffic jam, these materials slow down and bunch up as they enter a spiral arm, before emerging and continuing their journey through the galaxy.
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight Center, Greenbelt, MD
Share
Details
Last Updated May 09, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
Hubble Space Telescope Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Spiral Galaxies Keep Exploring Discover More Topics From Hubble
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Hubble Science Highlights
Hubble’s 35th Anniversary
Hubble’s Night Sky Challenge
View the full article
-
By NASA
Explore Hubble Science Hubble Space Telescope NASA’s Hubble Pinpoints… Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 7 Min Read NASA’s Hubble Pinpoints Roaming Massive Black Hole
This six-panel illustration of a tidal disruption event around a supermassive black hole shows the collision with a star followed by an explosion detected in X-ray as well as Hubble Space Telescope visible-light observations. Credits:
Artwork: NASA, ESA, STScI, Ralf Crawford (STScI) Like a scene out of a sci-fi movie, astronomers using NASA telescopes have found “Space Jaws.”
Lurking 600 million light-years away, within the inky black depths between stars, there is an invisible monster gulping down any wayward star that plummets toward it. The sneaky black hole betrayed its presence in a newly identified tidal disruption event (TDE) where a hapless star was ripped apart and swallowed in a spectacular burst of radiation. These disruption events are powerful probes of black hole physics, revealing the conditions necessary for launching jets and winds when a black hole is in the midst of consuming a star, and are seen as bright objects by telescopes.
The new TDE, called AT2024tvd, allowed astronomers to pinpoint a wandering supermassive black hole using NASA’s Hubble Space Telescope, with similar supporting observations from NASA’s Chandra X-Ray Observatory and the NRAO Very Large Array telescope that also showed that the black hole is offset from the center of the galaxy.
The paper will be published in an upcoming issue of The Astrophysical Journal Letters.
This six-panel illustration of a tidal disruption event around a supermassive black hole shows the following: 1) A supermassive black hole is adrift inside a galaxy, its presence only detectable by gravitational lensing; 2) A wayward star gets swept up in the black hole’s intense gravitational pull; 3) The star is stretched or “spaghettified” by gravitational tidal effects; 4) The star’s remnants form a disk around the black hole; 5) There is a period of black hole accretion, pouring out radiation across the electromagnetic spectrum, from X-rays to radio wavelengths; and 6) The host galaxy, seen from afar, contains a bright flash of energy that is offset from the galaxy’s nucleus, where an even more massive black hole dwells. Artwork: NASA, ESA, STScI, Ralf Crawford (STScI) Surprisingly, this one million-solar-mass black hole doesn’t reside exactly in the center of the host galaxy, where supermassive black holes are typically found, and actively gobble up surrounding material. Out of approximately 100 TDE events recorded by optical sky surveys so far, this is the first time an offset TDE has been identified. The rest are associated with the central black holes of galaxies.
In fact, at the center of the host galaxy there is a different supermassive black hole weighing 100 million times the mass of the Sun. Hubble’s optical precision shows the TDE was only 2,600 light-years from the more massive black hole at the galaxy’s center. That’s just one-tenth the distance between our Sun and the Milky Way’s central supermassive black hole.
This bigger black hole spews out energy as it accretes infalling gas, and it is categorized as an active galactic nucleus. Strangely, the two supermassive black holes co-exist in the same galaxy, but are not gravitationally bound to each other as a binary pair. The smaller black hole may eventually spiral into the galaxy’s center to merge with the bigger black hole. But for now, it is too far separated to be gravitationally bound.
A TDE happens when an infalling star is stretched or “spaghettified” by a black hole’s immense gravitational tidal forces. The shredded stellar remnants are pulled into a circular orbit around the black hole. This generates shocks and outflows with high temperatures that can be seen in ultraviolet and visible light.
“AT2024tvd is the first offset TDE captured by optical sky surveys, and it opens up the entire possibility of uncovering this elusive population of wandering black holes with future sky surveys,” said lead study author Yuhan Yao of the University of California at Berkeley. “Right now, theorists haven’t given much attention to offset TDEs. “I think this discovery will motivate scientists to look for more examples of this type of event.”
This is a Hubble Space Telescope image of distant galaxy that is host to the telltale signature of a roaming supermassive black hole. Science: NASA, ESA, STScI, Yuhan Yao (UC Berkeley); Image Processing: Joseph DePasquale (STScI) A Flash in the Night
The star-snacking black hole gave itself away when several ground-based sky survey telescopes observed a flare as bright as a supernova. But unlike a supernova, astronomers know that this came from a black hole snacking on a star because the flare was very hot, and showed broad emission lines of hydrogen, helium, carbon, nitrogen, and silicon. The Zwicky Transient Facility at Caltech’s Palomar Observatory, with its 1.2-meter telescope that surveys the entire northern sky every two days, first observed the event.
“Tidal disruption events hold great promise for illuminating the presence of massive black holes that we would otherwise not be able to detect,” said Ryan Chornock, associate adjunct professor at UC Berkeley and a member of the ZTF team. “Theorists have predicted that a population of massive black holes located away from the centers of galaxies must exist, but now we can use TDEs to find them.”
The flare was seemingly offset from the center of a bright massive galaxy as cataloged by Pan-STARRS (Panoramic Survey Telescope and Rapid Response System), the Sloan Digital Sky Survey, and the DESI Legacy Imaging Survey. To better determine that it was not at the galactic center, Yao’s team used NASA’s Chandra X-ray Observatory to confirm that X-rays from the flare site were also offset.
It took the resolving power of Hubble to settle any uncertainties. Hubble’s sensitivity to ultraviolet light also allows it to pinpoint the location of the TDE, which is much bluer than the rest of the galaxy.
This is a combined Hubble Space Telescope/Chandra X-Ray Observatory image of a distant galaxy that is host to the telltale signature of a roaming supermassive black hole. Both telescopes caught a tidal disruption event (TDE) caused by the black hole eating a star. Science: NASA, ESA, STScI, Yuhan Yao (UC Berkeley); Image Processing: Joseph DePasquale (STScI) Origin Unknown
The black hole responsible for the TDE is prowling inside the bulge of the massive galaxy. The black hole only becomes apparent every few tens of thousands of years when it “burps” from capturing a star, and then it goes quiet again until its next meal comes along.
How did the black hole get off-center? Previous theoretical studies have shown that black holes can be ejected out of the centers of galaxies because of three-body interactions, where the lowest-mass member gets kicked out. This may be the case here, given the stealthy black hole’s close proximity to the central black hole. “If the black hole went through a triple interaction with two other black holes in the galaxy’s core, it can still remain bound to the galaxy, orbiting around the central region,“ said Yao.
An alternative explanation is that the black hole is the surviving remnant of a smaller galaxy that merged with the host galaxy more than 1 billion years ago. If that is the case, the black hole might eventually spiral in to merge with the central active black hole sometime in the very far future. So at present, astronomers don’t know if it’s coming or going.
Erica Hammerstein, another UC Berkeley postdoctoral researcher, scrutinized the Hubble images as part of the study, but did not find any evidence of a past galaxy merger. But she explained, “There is already good evidence that galaxy mergers enhance TDE rates, but the presence of a second black hole in AT2024tvd’s host galaxy means that at some point in this galaxy’s past, a merger must have happened.”
Specialized for different kinds of light, observatories like Hubble and Chandra work together to pinpoint and better understand fleeting events like these. Future telescopes that will also be optimized for capturing transient events like this one include the National Science Foundation’s Vera C. Rubin Observatory and NASA’s upcoming Nancy Grace Roman Space Telescope. They will provide more opportunities for follow-up Hubble observations to zero in on a transient’s exact location.
Explore More:
Monster Black Holes are Everywhere
Hubble Focus: Black Holes – Into the Vortex e-Book
Science Behind the Discoveries: Black Holes
Hubble’s Universe Uncovered: Black Holes
The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
ZTF is a public-private partnership, with equal support from the ZTF Partnership and from the U.S. National Science Foundation.
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Related Images & Videos
Six panel illustration of Black Hole TDE AT2024tvd
This is a six-panel illustration of a tidal disruption event around a supermassive back hole.
Black Hole TDE AT2024tvdu00a0
This is a Hubble Space Telescope image of a distant galaxy that is host to the telltale signature of a roaming supermassive black hole.
Black Hole TDE AT2024tvd (Hubble + Chandra)
This is a combined Hubble Space Telescope/Chandra X-Ray Observatory image of a distant galaxy that is host to the telltale signature of a roaming supermassive black hole.
Black Hole TDE AT2024tvd Compass Image
This is a combined Hubble Space Telescope/Chandra X-Ray Observatory image of a distant galaxy that is host to the telltale signature of a roaming supermassive black hole.
Black Hole Tidal Disruption Event
This is a video animation of a tidal disruption event (TDE), an intense flash of radiation caused by the supermassive black hole eating a star. The video begins by zooming into a galaxy located 600 million light-years away.
Share
Details
Last Updated May 08, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center
Contact Media Claire Andreoli
NASA’s Goddard Space Flight Center
Greenbelt, Maryland
claire.andreoli@nasa.gov
Ray Villard
Space Telescope Science Institute
Baltimore, Maryland
Related Terms
Hubble Space Telescope Astrophysics Astrophysics Division Black Holes Chandra X-Ray Observatory Galaxies Goddard Space Flight Center
Keep Exploring Discover More Topics From Hubble
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Hubble Science Highlights
Hubble Images
Hubble News
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Editor’s Note: The following is one of three related articles about the NASA Data Acquisition System and related efforts. Please visit Stennis News – NASA to access accompanying articles.
A blended team of NASA personnel and contractors support ongoing development and operation of the NASA Data Acquisition System at NASA’s Stennis Space Center. Team members include, left to right: Andrew Graves (NASA), Shane Cravens (Syncom Space Services), Peggi Marshall (Syncom Space Services), Nicholas Payton Karno (Syncom Space Services), Alex Elliot (NASA), Kris Mobbs (NASA), Brandon Carver (NASA), Richard Smith (Syncom Space Services), and David Carver (NASA)NASA/Danny Nowlin Members of the NASA Data Acquisition System team at NASA’s Stennis Space Center evaluate system hardware for use in monitoring and collecting propulsion test data at the site.NASA/Danny Nowlin NASA software engineer Alex Elliot, right, and Syncom Space Services software engineer Peggi Marshall fine-tune data acquisition equipment at NASA’s Stennis Space Center by adjusting an oscilloscope to capture precise measurements. NASA/Danny Nowlin Syncom Space Services software test engineer Nicholas Payton Karno monitors a lab console at NASA’s Stennis Space Center displaying video footage of an RS-25 engine gimbal test, alongside data acquisition screens showing lab measurements. NASA/Danny Nowlin Just as a steady heartbeat is critical to staying alive, propulsion test data is vital to ensure engines and systems perform flawlessly.
The accuracy of the data produced during hot fire tests at NASA’s Stennis Space Center near Bay St. Louis, Mississippi, tells the performance story.
So, when NASA needed a standardized way to collect hot fire data across test facilities, an onsite team created an adaptable software tool to do it.
“The NASA Data Acquisition System (NDAS) developed at NASA Stennis is a forward-thinking solution,” said David Carver, acting chief of the Office of Test Data and Information Management. “It has unified NASA’s rocket propulsion testing under an adaptable software suite to meet needs with room for future expansion, both within NASA and potentially beyond.”
Before NDAS, contractors conducting test projects used various proprietary tools to gather performance data, which made cross-collaboration difficult. NDAS takes a one-size-fits-all approach, providing NASA with its own system to ensure consistency.
“Test teams in the past had to develop their own software tools, but now, they can focus on propulsion testing while the NDAS team focuses on developing the software that collects data,” said Carver.
A more efficient workflow has followed since the software system is designed to work with any test hardware. It allows engineers to seamlessly work between test areas, even when upgrades have been made and hardware has changed, to support hot fire requirements for the agency and commercial customers.
With the backing and resources of the NASA Rocket Propulsion Test (RPT) Program Office, a blended team of NASA personnel and contractors began developing NDAS in 2011 as part of the agency’s move to resume control of test operations at NASA Stennis. Commercial entities had conducted the operations on NASA’s behalf for several decades.
The NASA Stennis team wrote the NDAS software code with modular components that function independently and can be updated to meet the needs of each test facility. The team used LabVIEW, a graphical platform that allows developers to build software visually rather than using traditional text-based code.
Syncom Space Services software engineer Richard Smith, front, analyzes test results using the NASA Data Acquisition System Displays interface at NASA’s Stennis Space Center while NASA software engineer Brandon Carver actively tests and develops laboratory equipment. NASA/Danny Nowlin NASA engineers, from left to right, Tristan Mooney, Steven Helmstetter Chase Aubry, and Christoffer Barnett-Woods are shown in the E-1 Test Control Center where the NASA Data Acquisition System is utilized for propulsion test activities. NASA/Danny Nowlin NASA engineers Steven Helmstetter, Christoffer Barnett-Woods, and Tristan Mooney perform checkouts on a large data acquisition system for the E-1 Test Stand at NASA’s Stennis Space Center. The data acquisition hardware, which supports testing for E Test Complex commercial customers, is controlled by NASA Data Acquisition System software that allows engineers to view real-time data while troubleshooting hardware configuration.NASA/Danny Nowlin NASA engineers Steven Helmstetter, left, and Tristan Mooney work with the NASA Data Acquisition System in the E-1 Test Control Center, where the system is utilized for propulsion test activities.NASA/Danny Nowlin “These were very good decisions by the original team looking toward the future,” said Joe Lacher, a previous NASA project manager. “LabVIEW was a new language and is now taught in colleges and widely used in industry. Making the program modular made it adaptable.”
During propulsion tests, the NDAS system captures both high-speed and low-speed sensor data. The raw sensor data is converted into units for both real-time monitoring and post-test analysis.
During non-test operations, the system monitors the facility and test article systems to help ensure the general health and safety of the facility and personnel.
“Having quality software for instrumentation and data recording systems is critical and, in recent years, has become increasingly important,” said Tristan Mooney, NASA instrumentation engineer. “Long ago, the systems used less software, or even none at all. Amplifiers were configured with physical knobs, and data was recorded on tape or paper charts. Today, we use computers to configure, display, and store data for nearly everything.”
Developers demonstrated the new system on the A-2 Test Stand in 2014 for the J-2X engine test project.
From there, the team rolled it out on the Fred Haise Test Stand (formerly A-1), where it has been used for RS-25 engine testing since 2015. A year later, teams used NDAS on the Thad Cochran Test Stand (formerly B-2) in 2016 to support SLS (Space Launch System) Green Run testing for future Artemis missions.
One of the project goals for the system is to provide a common user experience to drive consistency across test complexes and centers.
Kris Mobbs, current NASA project manager for NDAS, said the system “really shined” during the core stage testing. “We ran 24-hour shifts, so we had people from across the test complex working on Green Run,” Mobbs said. “When the different shifts came to work, there was not a big transition needed. Using the software for troubleshooting, getting access to views, and seeing the measurements were very common activities, so the various teams did not have a lot of build-up time to support that test.”
Following success at the larger test stands, teams started using NDAS in the E Test Complex in 2017, first at the E-2 Test Stand, then on the E-1 and E-3 stands in 2020.
Growth of the project was “a little overwhelming,” Lacher recalled. The team maintained the software on active stands supporting tests, while also continuing to develop the software for other areas and their many unique requirements.
Each request for change had to be tracked, implemented into the code, tested in the lab, then deployed and validated on the test stands.
“This confluence of requirements tested my knowledge of every stand and its uniqueness,” said Lacher. “I had to understand the need, the effort to meet it, and then had to make decisions as to the priorities the team would work on first.”
Creation of the data system and its ongoing updates have transformed into opportunities for growth among the NASA Stennis teams working together.
“From a mechanical test operations perspective, NDAS has been a pretty easy system to learn,” said Derek Zacher, NASA test operations engineer. “The developers are responsive to the team’s ideas for improvement, and our experience has consistently improved with the changes that enable us to view our data in new ways.”
Originally designed to support the RPT office at NASA Stennis, the software is expanding beyond south Mississippi to other test centers, attracting interest from various NASA programs and projects, and garnering attention from government agencies that require reliable and scalable data acquisition. “It can be adopted nearly anywhere, such as aerospace and defense, research and development institutions and more places, where data acquisition systems are needed,” said Mobbs. “It is an ever-evolving solution.”
Read More Share
Details
Last Updated May 08, 2025 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
Stennis Space Center View the full article
-
By USH
In a groundbreaking development, advances in quantum data analysis have led to a discovery no scientist could have foreseen. NASA’s deep space monitoring system, upgraded with a quantum processor designed to filter cosmic noise and decode interstellar signals, produced something startling: an image.
A conceptual interpretation of the Voyager 1 image.
But this wasn’t an input, a simulation, or a product of algorithmic imagination. It wasn’t the result of random noise or a misfired pattern recognition process. The quantum system returned a coherent, structured, and symmetrical image, undeniably artificial. And the data it derived from? None other than Voyager 1.
Renowned physicist Michio Kaku addressed the anomaly in a recent interview: “We may be witnessing the first whisper of a new intelligence, something not man-made, not terrestrial, and certainly not random.”
The image, reconstructed via entangled qubit networks, depicted a figure: humanoid in silhouette, yet composed of geometric segments that defied any known biological or mechanical blueprint. It seemed deliberately crafted to challenge human comprehension, alien, yet eerily familiar enough to spark recognition.
Not long ago, NASA pushed the boundaries of computation by launching an experimental quantum computer, capable of processing vast, multidimensional data streams. But after this revelation, NASA abruptly shut down the system following the unexpected and unsettling incident, in 2023, though some believe the research continued in secret.
Meanwhile, Voyager 1—the most distant human-made object in space, still traveling beyond our solar system after 45 years—has been transmitting strange, inexplicable data. According to NASA engineers, the spacecraft’s Attitude Articulation and Control System (AACS) began sending signals that “do not reflect what’s actually happening onboard.”
Instead of useful telemetry, Voyager 1 has been broadcasting a puzzling sequence: a repeating pattern of ones and zeros. Initially dismissed as a glitch, engineers traced the anomaly to the Flight Data Subsystem (FDS), pinpointing a malfunctioning chip. Yet, despite their efforts, the signal persisted, a digital enigma from 24 billion kilometers away.
Is this merely a failing system showing its age? Or is something, or someone, intentionally altering the data?
What if this “error” is a message? And if so, who’s sending it?
View the full article
-
By NASA
A first-generation college graduate, Nilufar Ramji was blazing trails long before arriving at NASA. With her multifaceted expertise, she is helping shape the messaging behind humanity’s return to the Moon, Mars, and beyond.
Ramji is currently on detail as the co-executive producer for NASA’s live broadcasts, ensuring the agency’s missions and discoveries are clearly and effectively communicated to the public. Through her work, she expands understanding of what space exploration means for all—and why it matters.
Official portrait of Nilufar Ramji. NASA/Josh Valcarcel Before stepping into her acting role, Ramji served as the lead public affairs officer for Moon to Mars activities at NASA’s Johnson Space Center in Houston. She spearheaded communication strategies for the Commercial Lunar Payload Services initiative, which works with private companies to deliver science and technology payloads to the lunar surface. She has also provided live commentary for International Space Station operations to learn and prepare for Artemis missions.
Ramji played a pivotal role in communicating NASA’s involvement in two major lunar missions in 2025 including Firefly Aerospace’s Blue Ghost Mission 1 which successfully delivered 10 NASA payloads to the Moon’s Mare Crisium on March 2. Ramji served as the live mission commentator, helping audiences around the world follow the historic moment—from lunar orbit insertion to touchdown. She also led communications for Intuitive Machines’ IM-2 mission, which landed near the Moon’s South Pole on March 6, marking the southernmost lunar landing ever achieved.
Nilufar Ramji, left, and Brigette Oakes, vice president of engineering at Firefly Aerospace, in the company’s mission operations center in Cedar Park, Texas, during the Blue Ghost Mission 1 lunar landing. NASA/Helen Arase Vargas Early in her NASA career, she led agencywide STEM communications, shaping how NASA connects with students and educators. As a lead strategist, she developed messaging that made science and technology more accessible to younger audiences—helping inspire the Artemis Generation.
“Being one of the storytellers behind humanity’s return to the Moon is something I take pride in,” she said. “People don’t realize what exploring our solar system has done for us here on Earth. Going to the Moon and onto Mars will bring that message home.”
Nilufar Ramji, left, and Aliyah Craddock, digital media lead for NASA Science in the Science Mission Directorate, in the Astromaterials Research and Exploration Science laboratory at NASA’s Johnson Space Center in Houston. NASA Ramji communicates not just the science of space, but its greater significance. “How can we be thoughtful in our communications?” is a question that drives her approach. Whether guiding a live broadcast or developing messaging about lunar science, she is constantly evaluating, executing, and refining NASA’s voice.
She also understands the importance of commercial partnerships in expanding human presence in space. “It’s exciting to see how many different people and organizations come together to make this a reality,” she said. “By creating a larger space economy, we’re able to do things faster and cheaper and still accomplish the same goals to make sure we’re all successful.”
Nilufar Ramji presents a TedX Talk, “Storytelling from Space” in Sugar Land, Texas. In Aug. 2023, Ramji delivered a TEDx Talk, “Storytelling from Space” in Sugar Land, Texas, where she emphasized the power of narrative to inspire and unite humanity in the quest to explore the universe. Drawing from her NASA experience, she illustrated how communication bridges the gap between complex science and public engagement.
She credits her mentors and colleagues for supporting her growth. “I have great mentors and people I can lean on if I need help,” she said. “It’s something I didn’t realize I had until I came to NASA.”
Ramji believes stepping outside your comfort zone is essential. “Discomfort brings new learning, understanding, and opportunities, so I like being uncomfortable at times,” she said. “I’m open and receptive to feedback. Constructive criticism has helped me grow and evolve—and better understand NASA’s mission.”
For her, balance means creating intentional space for reflection, growth, and meaningful connection.
Nilufar Ramji gives remarks during Johnson’s building naming ceremony of the “Dorothy Vaughan Center in Honor of the Women of Apollo” on July 19, 2024. NASA/Robert Markowitz Before joining NASA, Ramji had already built an international career rooted in service. She worked at the Aga Khan Foundation in Canada, a nonprofit organization focused on addressing challenges in underdeveloped communities through education and healthcare.
She led visitor programs, workshops and more than 250 events—often for diplomats and global leaders—to promote “quiet diplomacy” and dialogue.
“Transparency, quality, fairness and diversity of perspective are all important to me,” she said. “People come from different experiences that broaden our understanding.”
Ramji later moved to East Africa as the foundation’s sole communications representative across Kenya, Tanzania, and Uganda. There, she trained more than 300 staff and built a communications strategy to help local teams share stories of impact—both successes and challenges—with honesty and empathy.
Her work left a lasting mark on the communities she served and underscored the power of communication to drive positive change.
Nilufar Ramji captures the story of a sesame farmer in Mtwara, Tanzania, whose livelihood improved through a rural development program initiated by the Aga Khan Foundation. In 2013, Ramji moved to the United States and started over, rebuilding her network and career. She worked for the Aga Khan Council for USA in Houston, leading a volunteer recruitment program that connected thousands of people with roles suited to their skills.
She later applied for a contractor position—not knowing it was with NASA. “I never thought my skills or expertise would be valued at a place like NASA,” she said. But in 2018, she accepted a role as a public relations specialist supporting International Space Station outreach. She has been shaping the agency’s storytelling ever since.
Ramji’s journey represents NASA’s commitment to pushing boundaries and expanding humanity’s knowledge of the universe. With collaboration, transparency, and vision, she is helping bring the next frontier of space exploration to life.
Explore More
4 min read Robots, Rovers, and Regolith: NASA Brings Exploration to FIRST Robotics 2025
Article 7 days ago 4 min read NASA Advances Precision Landing Technology with Field Test at Kennedy
Article 7 days ago 3 min read In the Starlight: Jason Phillips’ Unexpected Path to Johnson Procurement
Article 1 week ago View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.