Jump to content

Very Cold Detectors Reveal the Very Hot Universe and Kick Off a New Era in X-ray Astronomy


Recommended Posts

  • Publishers
Posted

X-rays are radiated by matter hotter than one million Kelvin, and high-resolution X-ray spectroscopy can tell us about the composition of the matter and how fast and in what direction it is moving. Quantum calorimeters are opening this new window on the Universe. First promised four decades ago, the quantum-calorimeter era of X-ray astronomy has finally dawned.

Electronic chip with wire bonds and a central square of 36 gray squares, situated atop a gold rectangle secured with screws.
Photo of the XRISM/Resolve quantum-calorimeter array in its storage container prior to integration into the instrument. The 6×6 array, 5 mm on a side, consists of independent detectors – each one a thermally isolated silicon thermistor with a HgTe absorber. The spectrometer consisting of this detector and other essential technologies separates astrophysical X-ray spectra into about 2400 resolution elements, which can be thought of as X-ray colors.
NASA GSFC

A quantum calorimeter is a device that makes precise measurements of energy quanta by measuring the temperature change that occurs when a quantum of energy is deposited in an absorber with low heat capacity. The absorber is attached to a thermometer that is somewhat decoupled from a heat sink so that the sensor can heat up and then cool back down again. To reduce thermodynamic noise and the heat capacity of the sensor, operation at temperatures less than 0.1 K is required. 

The idea for thermal measurement of small amounts of energy occurred in several places in the world independently when scientists observed pulses in the readout of low-temperature thermometers and infrared detectors. They attributed these spurious signals to passing cosmic-ray particles, and considered optimizing detectors for sensitive measurement of the energy of particles and photons.

The idea to develop such sensors for X-ray astronomy was conceived at Goddard Space Flight Center in 1982 when X-ray astronomers were considering instruments to propose for NASA’s planned Advanced X-ray Astrophysics Facility (AXAF). In a fateful conversation, infrared astronomer Harvey Moseley suggested thermal detection could offer substantial improvement over existing solid-state detectors. Using Goddard internal research and development funding, development advanced sufficiently to justify, just two years later, proposing a quantum-calorimeter X-ray Spectrometer (XRS) for inclusion on AXAF. Despite its technical immaturity at the time, the revolutionary potential of the XRS was acknowledged, and the proposal was accepted.

The AXAF design evolved over the subsequent years, however, and the XRS was eliminated from its complement of instruments. After discussions between NASA and the Japanese Institute of Space and Astronautical Science (ISAS), a new XRS was included in the instrument suite of the Japanese Astro-E X-ray observatory. Astro-E launched in 2000 but did not reach orbit due to an anomaly in the first stage of the rocket. Astro-E2, a rebuild of Astro-E, was successfully placed in orbit in 2005 and renamed Suzaku, but the XRS instrument ceased operation before observations started due to loss of the liquid helium, an essential part of the detector cooling system, caused by a faulty storage system.

A redesigned mission, Astro-H, that included a quantum-calorimeter instrument with a redundant cooling system was successfully launched in 2016 and renamed Hitomi. Hitomi’s Soft X-ray Spectrometer (SXS) obtained high resolution spectra of the Perseus cluster of galaxies and a few other sources before a problem with the attitude control system caused the mission to be lost roughly one month after launch. Even so, Hitomi was the first orbiting observatory to obtain a scientific result using X-ray quantum calorimeters. The spectacular Perseus spectrum generated by the SXS motivated yet another attempt to implement a spaceborne quantum-calorimeter spectrometer.

The X-ray Imaging and Spectroscopy Mission (XRISM) was launched in September 2023, with the spectrometer aboard renamed Resolve to represent not only its function but also the resolve of the U.S./Japan collaboration to study the Universe through the window of this new capability. XRISM has been operating well in orbit for over a year.  

Development of the Sensor Technology

Development of the sensor technology employed in Resolve began four decades ago. Note that an X-ray quantum-calorimeter spectrometer requires more than the sensor technology. Other technologies, such as the coolers that provide a

The sensors used from XRS through Resolve were all based on silicon-thermistor thermometers and mercury telluride (HgTe) X-ray absorbers. They used arrays consisting of 32 to 36 pixels, each of which was an independent quantum calorimeter.  Between Astro-E and Astro-E2, a new method of making the thermistor was developed that significantly reduced its low-frequency noise. Other fabrication advances made it possible to make reproducible connections between absorbers and thermistors and to fit each thermistor and its thermal isolation under its X-ray absorber, making square arrays feasible.

Through a Small Business Innovation Research (SBIR) contract executed after the Astro-E2 mission, EPIR Technologies Inc. reduced the specific heat of the HgTe absorbers. Additional improvements made to the cooler of the detector heat sink allowed operation at a lower temperature, which further reduced the specific heat. Together, these changes enabled the pixel width to be increased from 0.64 mm to 0.83 mm while still achieving a lower heat capacity, and thus improving the energy resolution. From Astro-E through Astro-H, the energy resolution for X-rays of energy around 6000 eV improved from 11 eV, to 5.5 eV, to 4 eV. No changes to the array design were made between Astro-H and XRISM.

Person in white clean-room coverall, blue gloves, and face mask seated at a workbench using tweezers to place an electrical component into a gold and black assembly.
Resolve detector scientist Caroline Kilbourne installing the flight Resolve quantum-calorimeter array into the assembly that provides its electrical, thermal, and mechanical interfaces.
NASA GSFC

Over the same period, other approaches to quantum-calorimeter arrays optimized for the needs of future missions were developed. The use of superconducting transition-edge sensors (TES) instead of silicon (Si) thermistors led to improved energy resolution, more pixels per array, and multiplexing (a technique that allows multiple signals to be carried on a single wire). Quantum-calorimeter arrays with thousands of pixels are now standard, such as in the NASA contribution to the future European New Advanced Telescope for High-ENergy Astrophysics (newAthena) mission. And quantum calorimeters using paramagnetic thermometers — which unlike TES and Si thermistors require no dissipation of heat in the thermometer for it to be read out — combined with high-density wiring are a promising route for realizing even larger arrays. (See Astrophysics Technology Highlight on these latest developments.)

White line showing a spectrum from 5 to 9 keV and no units on the y axis, with a peak and two dips in the range between 6 and 7 keV, atop a faint astronomical image rendered in black, pink, and blue.
The Resolve instrument aboard XRISM (X-ray Imaging and Spectroscopy Mission) captured data from the center of galaxy NGC 4151, where a supermassive black hole is slowly consuming material from the surrounding accretion disk. The resulting spectrum reveals the presence of iron in the peak around 6.5 keV and the dips around 7 keV, light thousands of times more energetic that what our eyes can see. Background: An image of NGC 4151 constructed from a combination of X-ray, optical, and radio light.
Spectrum: JAXA/NASA/XRISM Resolve. Background: X-rays, NASA/CXC/CfA/J.Wang et al.; optical, Isaac Newton Group of Telescopes, La Palma/Jacobus Kapteyn Telescope; radio, NSF/NRAO/VLA

Results from Resolve

So, what is Resolve revealing about the Universe? Through spectroscopy alone, Resolve allows us to construct images of complex environments where collections of gas and dust with various attributes exist, emitting and absorbing X-rays at energies characteristic of their various compositions, velocities, and temperatures. For example, in the middle of the galaxy known as NCG 4151 (see figure above), matter spiraling into the central massive black hole forms a circular structure that is flat near the black hole, more donut-shaped further out, and, according to the Resolve data, a bit lumpy. Matter near the black hole is heated up to X-ray-emitting temperatures and irradiates the matter in the circular structure. The Resolve spectrum has a bright narrow emission line (peak) from neutral iron atoms that must be coming from colder matter in the circular structure, because hotter material would be ionized, and would have a different emission signature. Nonetheless, the shape of the iron line needs three components to describe it, each coming from a different lump in the circular structure. The presence of absorption lines (dips) in the spectrum provides further detail about the structure of the infalling matter.

A second example is the detection of X-ray emission by Resolve from the debris of stars that have exploded, such as N132D (see figure below), that will improve our understanding of the explosion mechanism and how the elements produced in stars get distributed, and allow us to infer the type of star each was before ending in a supernova. Elements are identified by their characteristic emission lines, and shifts of those lines via the Doppler effect tell us how fast the material is moving.

Black background with white line showing a spectrum from 1 to 8 keV and no units on the y axis, with multiple peaks labeled by the associated elements and an astronomical image rendered in colors from red through violet.
XRISM’s Resolve instrument captured data from supernova remnant N132D in the Large Magellanic Cloud to create the most detailed X-ray spectrum of the object ever made. The spectrum reveals peaks associated with silicon, sulfur, argon, calcium, and iron. Inset at right is an image of N132D captured by XRISM’s Xtend instrument.
JAXA/NASA/XRISM Resolve and Xtend

These results are just the beginning. The rich Resolve data sets are identifying complex velocity structures, rare elements, and multiple temperature components in a diverse ensemble of cosmic objects. Welcome to the quantum calorimeter era! Stay tuned for more revelations!

Project Leads: Dr. Caroline Kilbourne, NASA Goddard Space Flight Center (GSFC), for silicon-thermistor quantum calorimeter development from Astro-E2 through XRISM and early TES development. Foundational and other essential leadership provided by Dr. Harvey Moseley, Dr. John Mather, Dr. Richard Kelley, Dr. Andrew Szymkowiak, Mr. Brent Mott, Dr. F. Scott Porter, Ms. Christine Jhabvala, Dr. James Chervenak (GSFC at the time of the work) and Dr. Dan McCammon (U. Wisconsin).

Sponsoring Organizations and Programs:  The NASA Headquarters Astrophysics Division sponsored the projects, missions, and other efforts that culminated in the development of the Resolve instrument.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The G-IV aircraft flies overhead in the Mojave Desert near NASA’s Armstrong Flight Research Center in Edwards, California. Baseline flights like this one occurred in June 2024, and future flights in service of science research will benefit from the installment of the Soxnav navigational system, developed in collaboration with NASA’s Jet Propulsion Laboratory in Southern California and the Bay Area Environmental Research Institute in California’s Silicon Valley. This navigational system provides precise, economical aircraft guidance for a variety of aircraft types moving at high speeds.NASA/Carla Thomas NASA and its partners recently tested an aircraft guidance system that could help planes maintain a precise course even while flying at high speeds up to 500 mph. The instrument is Soxnav, the culmination of more than 30 years of development of aircraft navigation systems.
      NASA’s G-IV aircraft flew its first mission to test this navigational system from NASA’s Armstrong Flight Research Center in Edwards, California, in December 2024. The team was composed of engineers from NASA Armstrong, NASA’s Jet Propulsion Laboratory in Southern California, and the Bay Area Environmental Research Institute (BAERI) in California’s Silicon Valley.
      “The objective was to demonstrate this new system can keep a high-speed aircraft within just a few feet of its target track, and to keep it there better than 90% of the time,” said John Sonntag, BAERI independent consultant co-developer of Soxnav.
      With 3D automated steering guidance, Soxnav provides pilots with a precision approach aid for landing in poor visibility. Previous generations of navigational systems laid the technical baseline for Soxnav’s modern, compact, and automated iteration.
      “The G-IV is currently equipped with a standard autopilot system,” said Joe Piotrowski Jr., operations engineer for the G-IV. “But Soxnav will be able to create the exact level flight required for Next Generation Airborne Synthetic Aperture Radar (AirSAR-NG) mission success.”
      Jose “Manny” Rodriguez adjusts the Soxnav instrument onboard the G-IV aircraft in December 2024. As part of the team of experts, Rodriguez ensures that the electronic components of this instrument are installed efficiently. His expertise will help bring the innovative navigational guidance of the Soxnav system to the G-IV and the wider airborne science fleet at NASA. Precision guidance provided by the Soxnav enables research aircraft like the G-IV to collect more accurate, more reliable Earth science data to scientists on the ground.NASA/Steve Freeman Guided by Soxnav, the G-IV may be able to deliver better, more abundant, and less expensive scientific information. For instance, the navigation tool optimizes observations by AirSAR-NG, an instrument that uses three radars simultaneously to observe subtle changes in the Earth’s surface. Together with the Soxnav system, these three radars provide enhanced and more accurate data about Earth science.
      “With the data that can be collected from science flights equipped with the Soxnav instrument, NASA can provide the general public with better support for natural disasters, tracking of food and water supplies, as well as general Earth data about how the environment is changing,” Piotrowski said.
      Ultimately, this economical flight guidance system is intended to be used by a variety of aircraft types and support a variety of present and future airborne sensors. “The Soxnav system is important for all of NASA’s Airborne Science platforms,” said Fran Becker, project manager for the G-IV AirSAR-NG project at NASA Armstrong. “The intent is for the system to be utilized by any airborne science platform and satisfy each mission’s goals for data collection.”
      In conjunction with the other instruments outfitting the fleet of airborne science aircraft, Soxnav facilitates the generation of more abundant and higher quality scientific data about planet Earth. With extreme weather events becoming increasingly common, quality Earth science data can improve our understanding of our home planet to address the challenges we face today, and to prepare for future weather events.
      “Soxnav enables better data collection for people who can use that information to safeguard and improve the lives of future generations,” Sonntag said.
      Share
      Details
      Last Updated Feb 07, 2025 EditorDede DiniusContactErica HeimLocationArmstrong Flight Research Center Related Terms
      Airborne Science Armstrong Flight Research Center B200 Earth Science Jet Propulsion Laboratory Explore More
      5 min read NASA CubeSat Finds New Radiation Belts After May 2024 Solar Storm
      Key Points The largest solar storm in two decades hit Earth in May 2024. For…
      Article 24 hours ago 2 min read Wind Over Its Wing: NASA’s X-66 Model Tests Airflow
      Article 2 days ago 3 min read NASA’s Cloud-based Confluence Software Helps Hydrologists Study Rivers on a Global Scale
      Rivers and streams wrap around Earth in complex networks millions of miles long, driving trade,…
      Article 3 days ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Earth Science
      Aircraft Flown at Armstrong
      Armstrong Science Projects
      View the full article
    • By NASA
      5 min read
      NASA CubeSat Finds New Radiation Belts After May 2024 Solar Storm
      Key Points
      The May 2024 solar storm created two new temporary belts of high-energy particles surrounding Earth. Such belts have been seen before, but the new ones were particularly long lasting, especially the new proton belt.  The findings are particularly important for spacecraft launching into geostationary orbits, which can be damaged as they traverse the dangerous belts. The largest solar storm in two decades hit Earth in May 2024. For several days, wave after wave of high-energy charged particles from the Sun rocked the planet. Brilliant auroras engulfed the skies, and some GPS communications were temporarily disrupted.
      With the help of a serendipitously resurrected small NASA satellite, scientists have discovered that this storm also created two new temporary belts of energetic particles encircling Earth. The findings are important to understanding how future solar storms could impact our technology. 
      The new belts formed between two others that permanently surround Earth called the Van Allen Belts. Shaped like concentric rings high above Earth’s equator, these permanent belts are composed of a mix of high-energy electrons and protons that are trapped in place by Earth’s magnetic field. The energetic particles in these belts can damage spacecraft and imperil astronauts who pass through them, so understanding their dynamics is key to safe spaceflight. 
      The May 2024 solar storm created two extra radiation belts, sandwiched between the two permanent Van Allen Belts. One of the new belts, shown in purple, included a population of protons, giving it a unique composition that hadn’t been seen before. NASA/Goddard Space Flight Center/Kristen Perrin The discovery of the new belts, made possible by NASA’s Colorado Inner Radiation Belt Experiment (CIRBE) satellite and published Feb. 6, 2025, in the Journal of Geophysical Research: Space Physics, is particularly important for protecting spacecraft launching into geostationary orbits, since they travel through the Van Allen Belts several times before reaching their final orbit.
      New Belts Amaze Scientists
      Temporary belts have been detected in the aftermath of large solar storms before. But while previous belts have been composed mostly of electrons, the innermost of the two new belts also included energetic protons. This unique composition is likely due to the strength and composition of the solar storm.
      “When we compared the data from before and after the storm, I said, ‘Wow, this is something really new,’” said the paper’s lead author Xinlin Li, a professor at the Laboratory for Atmospheric and Space Physics (LASP) and Department of Aerospace Engineering Sciences at the University of Colorado Boulder. “This is really stunning.”
      The new belts also seem to have lasted much longer than previous belts. Whereas previous temporary belts lasted around four weeks, the new belt composed primary of electrons lasted more than three months. The other belt, that also includes protons, has lasted much longer than the electron belt because it is in a more stable region and is less prone to the physical processes that can knock the particles out of orbit. It is likely still there today.
      “These are really high-energy electrons and protons that have found their way into Earth’s inner magnetic environment,” said David Sibeck, former mission scientist for NASA’s Van Allen Probes and research scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, who was not involved with the new study. “Some might stay in this place for a very long time.”
      How long such belts stick around depends on passing solar storms. Large storms can provide the energy to knock particles in these belts out of their orbits and send them spiraling off into space or down to Earth. One such storm at the end of June significantly decreased the size of the new electron belt and another in August nearly erased the remainder of that electron belt, though a small population of high-energy electrons endured.
      CubeSat Fortuitously Comes Back to Life to Make the Discovery
      The new discovery was made by NASA’s CIRBE satellite, a CubeSat about the size of a shoebox that circled the planet’s magnetic poles in a low Earth orbit from April 2023 to October 2024. CIRBE housed an instrument called the Relativistic Electron Proton Telescope integrated little experiment-2 (REPTile-2) — a miniaturized and upgraded version of an instrument that flew aboard NASA’s Van Allen Probes, which made the first discovery of a temporary electron belt in 2013.
      The CIRBE CubeSat in the laboratory before launch. CIRBE was designed and built by LASP at the University of Colorado Boulder. Xinlin Li/LASP/CU Boulder After a year in space, the CubeSat experienced an anomaly and unexpectedly went quiet on April 15, 2024. The scientists were disappointed to miss the solar storm in May but were able to rely on other spacecraft to provide some preliminary data on the electron belt. Luckily, on June 15, the spacecraft sprang back to life and resumed taking measurements. The data provided high-resolution information that couldn’t be gleaned by any other instrument and allowed the scientists to understand the magnitude of the new belts.
      “Once we resumed measurements, we were able to see the new electron belt, which wasn’t visible in the data from other spacecraft,” Li said.
      Having the CubeSat in orbit to measure the effect of the solar storm has been bittersweet, Li said. While it provided the opportunity to measure the effects of such a large event, the storm also increased atmospheric drag on the CubeSat, which caused its orbit to decrease prematurely. As a result, the CubeSat deorbited in October 2024. However, the spacecraft’s data makes it all worth it.
      “We are very proud that our very small CubeSat made such a discovery,” Li said.
      CIRBE was designed and built by LASP at the University of Colorado Boulder and was launched through NASA’s CubeSat Launch Initiative (CSLI). The mission is sponsored by NASA’s Heliophysics Flight Opportunities for Research & Technology (H-FORT) program.
      By Mara Johnson-Groh
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Feb 06, 2025 Related Terms
      Heliophysics CubeSats Goddard Space Flight Center Heliophysics Division Ionosphere Space Weather The Sun Van Allen Probes Explore More
      5 min read Straight Shot: Hubble Investigates Galaxy with Nine Rings


      Article


      2 days ago
      2 min read Hubble Spots a Supernova


      Article


      6 days ago
      2 min read Hubble Studies the Tarantula Nebula’s Outskirts


      Article


      2 weeks ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      (Jan. 13, 2025) Astronaut Nick Hague swaps samples of materials to observe how they burn in weightlessness.Credit: NASA Students from the Thomas Edison EnergySmart Charter School in Somerset, New Jersey, will have the chance to connect with NASA astronaut Nick Hague as he answers prerecorded science, technology, engineering, and mathematics (STEM) related questions from aboard the International Space Station.
      Watch the 20-minute space-to-Earth call at 11:10 a.m. EST on Tuesday, Feb. 11, on NASA+ and learn how to watch NASA content on various platforms, including social media.
      Media interested in covering the event must RSVP by 5 p.m., Thursday, Feb. 6, to Jeanette Allison at: oyildiz@energysmartschool.org or 732-412-7643.
      For more than 24 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
      Important research and technology investigations taking place aboard the space station benefit people on Earth and lay the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery.
      See videos and lesson plans highlighting space station research at:
      https://www.nasa.gov/stemonstation
      -end-
      Abbey Donaldson
      Headquarters, Washington
      202-358-1600
      Abbey.a.donaldson@nasa.gov
      Sandra Jones 
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Feb 05, 2025 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Humans in Space In-flight Education Downlinks ISS Research STEM Engagement at NASA View the full article
    • By NASA
      NASA Stennis representative Dawn Davis, left, interacts with people at the NASA booth during the 2025 FAN EXPO event hosted in New Orleans Jan. 10-12.NASA/Troy Frisbie NASA reached out to inspire members of the Artemis Generation on Jan. 10-12, joining one of the largest comic con producers in the world to host an outreach booth at the 2025 FAN EXPO in New Orleans.
      Thousands of fans celebrating the best in pop culture such as movies, comics, and video gaming learned about NASA’s Stennis Space Center near Bay St. Louis, Mississippi, and its role to power space dreams.
      NASA Stennis representatives Patricia White, left, and Robert Smith are visited by a functional mock-up of R5-D4, a droid character from the Star Wars film series, during the 2025 FAN EXPO event hosted in New Orleans Jan. 10-12.NASA/Troy Frisbie NASA Stennis representative Dawn Davis, left, interacts with people at the NASA booth during the 2025 FAN EXPO event hosted in New Orleans Jan. 10-12.NASA/Troy Frisbie NASA Stennis representative Troy Frisbie, left, is pictured with Colleen Cooper, daughter of L. Gordon Cooper Jr., one of the original Mercury Seven astronauts, during the 2025 FAN EXPO event hosted in New Orleans Jan. 10-12. Cooper Jr., selected as a Mercury astronaut in 1959, piloted the “Faith 7” spacecraft in 1963, which concluded the operational phase of Project Mercury. NASA/Patricia White NASA Stennis representative Matt Sappington engages with a comic con fan at the NASA booth during the 2025 FAN EXPO event hosted in New Orleans Jan. 10-12.NASA/Troy Frisbie NASA Stennis representatives Patricia White, left, and Robert Smith have a conversation with NASA booth visitors during the 2025 FAN EXPO event hosted in New Orleans Jan. 10-12.NASA/Troy Frisbie A comic con attendee experiences being on the International Space Station with the immersive virtual reality headset at the NASA booth during the 2025 FAN EXPO event hosted in New Orleans Jan. 10-12.NASA/Troy Frisbie Fans of all ages learn about NASA during the 2025 FAN EXPO event hosted in New Orleans Jan. 10-12.NASA/Troy Frisbie Attendees learn about the ways people come together in various career fields to achieve mission success at NASA during the 2025 FAN EXPO event hosted in New Orleans Jan. 10-12.NASA/Troy Frisbie The south Mississippi NASA center operates as NASA’s primary, and America’s largest, rocket propulsion test site. NASA Stennis serves the nation and commercial aerospace sector with its unique capabilities and expertise. In addition to testing rocket engines and stages to power future Artemis missions to the Moon and beyond, NASA Stennis provides a unique location and specialized assets to support the individual missions and work of about 50 federal, state, academic, commercial, and technology-based companies, and organizations.
      In addition to testing rocket engines and stages to power future Artemis missions to the Moon and beyond, NASA Stennis provides a unique location and specialized assets to support the individual missions and work of about 50 federal, state, academic, commercial, and technology-based companies, and organizations.
      View the full article
  • Check out these Videos

×
×
  • Create New...