Members Can Post Anonymously On This Site
Material Compatibility of Common Aerospace Metals in MMH/MON-3
-
Similar Topics
-
By NASA
Explore This Section Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 6 Min Read NASA’s Webb Lifts Veil on Common but Mysterious Type of Exoplanet
This artist’s concept shows what the hot sub-Neptune exoplanet TOI-421 b could look like. It is based on spectroscopic data gathered by Webb, as well as previous observations from other telescopes on the ground and in space. Credits:
Illustration: NASA, ESA, CSA, Dani Player (STScI) Though they don’t orbit around our Sun, sub-Neptunes are the most common type of exoplanet, or planet outside our solar system, that have been observed in our galaxy. These small, gassy planets are shrouded in mystery…and often, a lot of haze. Now, by observing exoplanet TOI-421 b, NASA’s James Webb Space Telescope is helping scientists understand sub-Neptunes in a way that was not possible prior to the telescope’s launch.
“I had been waiting my entire career for Webb so that we could meaningfully characterize the atmospheres of these smaller planets,” said principal investigator Eliza Kempton of the University of Maryland, College Park. “By studying their atmospheres, we’re getting a better understanding of how sub-Neptunes formed and evolved, and part of that is understanding why they don’t exist in our solar system.”
Image A: Artist’s Concept of TOI-421 b
This artist’s concept shows what the hot sub-Neptune exoplanet TOI-421 b could look like. It is based on spectroscopic data gathered by Webb, as well as previous observations from other telescopes on the ground and in space. Illustration: NASA, ESA, CSA, Dani Player (STScI) Small, Cool, Shrouded in Haze
The existence of sub-Neptunes was unexpected before they were discovered by NASA’s retired Kepler space telescope in the last decade. Now, astronomers are trying to understand where these planets came from and why are they so common.
Before Webb, scientists had very little information on them. While sub-Neptunes are a few times larger than Earth, they are still much smaller than gas-giant planets and typically cooler than hot Jupiters, making them much more challenging to observe than their gas-giant counterparts.
A key finding prior to Webb was that most sub-Neptune atmospheres had flat or featureless transmission spectra. This means that when scientists observed the spectrum of the planet as it passed in front of its host star, instead of seeing spectral features – the chemical fingerprints that would reveal the composition of the atmosphere – they saw only a flat-line spectrum. Astronomers concluded from all of those flat-line spectra that at least certain sub-Neptunes were probably very highly obscured by either clouds or hazes.
Image B: Spectrum of TOI-421 b
A transmission spectrum captured by NASA’s James Webb Space Telescope reveals chemicals in the atmosphere of the hot sub-Neptune exoplanet TOI-421 b. Illustration: NASA, ESA, CSA, Joseph Olmsted (STScI) A Different Kind of Sub-Neptune?
“Why did we observe this planet, TOI-421 b? It’s because we thought that maybe it wouldn’t have hazes,” said Kempton. “And the reason is that there were some previous data that implied that maybe planets over a certain temperature range were less enshrouded by haze or clouds than others.”
That temperature threshold is about 1,070 degrees Fahrenheit. Below that, scientists hypothesized that a complex set of photochemical reactions would occur between sunlight and methane gas, and that would trigger the haze. But hotter planets shouldn’t have methane and therefore perhaps shouldn’t have haze.
The temperature of TOI-421 b is about 1,340 degrees Fahrenheit, well above the presumed threshold. Without haze or clouds, researchers expected to see a clear atmosphere – and they did!
A Surprising Finding
“We saw spectral features that we attribute to various gases, and that allowed us to determine the composition of the atmosphere,” said the University of Maryland’s Brian Davenport, a third-year Ph.D. student who conducted the primary data analysis. “Whereas with many of the other sub-Neptunes that had been previously observed, we know their atmospheres are made of something, but they’re being blocked by haze.”
The team found water vapor in the planet’s atmosphere, as well as tentative signatures of carbon monoxide and sulfur dioxide. Then there are molecules they didn’t detect, such as methane and carbon dioxide. From the data, they can also infer that a large amount of hydrogen is in TOI-421 b’s atmosphere.
The lightweight hydrogen atmosphere was the big surprise to the researchers. “We had recently wrapped our mind around the idea that those first few sub-Neptunes observed by Webb had heavy-molecule atmospheres, so that had become our expectation, and then we found the opposite,” said Kempton. This suggests TOI-421 b may have formed and evolved differently from the cooler sub-Neptunes observed previously.
Is TOI-421 b Unique?
The hydrogen-dominated atmosphere is also interesting because it mimics the composition of TOI-421 b’s host star. “If you just took the same gas that made the host star, plopped it on top of a planet’s atmosphere, and put it at the much cooler temperature of this planet, you would get the same combination of gases. That process is more in line with the giant planets in our solar system, and it is different from other sub-Neptunes that have been observed with Webb so far,” said Kempton.
Aside from being hotter than other sub-Neptunes previously observed with Webb, TOI-421 b orbits a Sun-like star. Most of the other sub-Neptunes that have been observed so far orbit smaller, cooler stars called red dwarfs.
Is TOI-421b emblematic of hot sub-Neptunes orbiting Sun-like stars, or is it just that exoplanets are very diverse? To find out, the researchers would like to observe more hot sub-Neptunes to determine if this is a unique case or a broader trend. They hope to gain insights into the formation and evolution of these common exoplanets.
“We’ve unlocked a new way to look at these sub-Neptunes,” said Davenport. “These high-temperature planets are amenable to characterization. So by looking at sub-Neptunes of this temperature, we’re perhaps more likely to accelerate our ability to learn about these planets.”
The team’s findings appear on May 5 in the Astrophysical Journal Letters.
The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
To learn more about Webb, visit:
https://science.nasa.gov/webb
Downloads
Click any image to open a larger version.
View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
Media Contacts
Laura Betz – laura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Ann Jenkins – jenkins@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Hannah Braun – hbraun@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Related Information
Webb Blog: Reconnaissance of Potentially Habitable Worlds with NASA’s Webb
Video: How to Study Exoplanets
Article: Webb’s Impact on Exoplanet Research
Video: How do we learn about a planet’s Atmosphere?
Learn more about exoplanets
More Webb News
More Webb Images
Webb Science Themes
Webb Mission Page
Related For Kids
What is the Webb Telescope?
SpacePlace for Kids
En Español
Ciencia de la NASA
NASA en español
Space Place para niños
Keep Exploring Related Topics
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Exoplanets
Exoplanet Stories
Universe
Share
Details
Last Updated May 04, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
James Webb Space Telescope (JWST) Astrophysics Exoplanets Goddard Space Flight Center Science & Research The Universe View the full article
-
By NASA
NASA’s Office of STEM Engagement at Johnson Space Center offers Texas high school students a unique gateway to the world of space exploration through the High School Aerospace Scholars (HAS) program. This initiative gives juniors hands-on experience, working on projects that range from designing spacecraft to planning Mars missions.
Nearly 30 participants who have been hired by NASA in the past five years are HAS alumni. Their stories highlight the program’s impact on students—inspiring innovation, fostering collaboration, unlocking their potential as they move forward into STEM careers.
Discover how the HAS experience has shaped these former students’ space exploration journey.
Jaylon Collins: Designing the Future of Spaceflight
Jaylon Collins always knew he wanted to study the universe but HAS shifted his perspective on what a STEM career could be.
“HAS brought a newfound perspective on what my STEM career could look like, and that shift led me to where I am today,” Collins said. “The coursework, NASA-led seminars, and space exploration research showed me that I could do direct design work to aid humanity’s exploration of the cosmos. I didn’t want to only learn about our universe—I wanted to help explore it.”
Jaylon Collins with his parents at the University of Texas at Austin after being accepted as a student class of 2028. “HAS showed me that a career in STEM doesn’t require a label, only your passion,” Collins said. “I saw that STEM could lead to endless career paths, and the guide was whatever I was most passionate about.”
He saw firsthand how engineers tackle the challenges of spaceflight, from designing spacecraft to solving complex mission scenarios. His strong performance in the program earned him an invitation to Moonshot, a five-day virtual challenge where NASA scientists and engineers mentor students through an Artemis-themed mission. His team developed a Mars sample return mission, an experience that taught him valuable lessons in teamwork.
“We combined our knowledge to design solutions that fit our mission profile, and I learned how problem-solving goes beyond the obvious tools like math and science,” he said. “Instead, it entails finding unique methods that trade off certain elements to bolster others and finding the optimal solution for our problem. HAS taught me to listen more than talk and take constructive feedback to create a solid plan.”
Now studying aerospace engineering at the University of Texas at Austin, Collins credits HAS with building his professional network and opening doors to NASA internship opportunities.
“I learned so much from seminars, my peers, and my Moonshot mentors about not only my academic future but also my prospective career,” he said. “My HAS experience has granted me a web of internship opportunities at NASA through the Gateway Program, and I hope that I can leverage it soon in L’Space Academy’s Lucy Internship.”
Jaylon Collins at Johnson Space Center with the 2024 astronaut graduate class. Collins hopes to contribute to NASA’s mission by developing solutions for deep space travel. Beyond that, he wants to inspire the next generation.
“I believe that the goal of universal knowledge is to reverberate the passions I have onto other curious dreamers,” he said. “Having mentors who teach the curious is the way we progress and innovate as a society, and I am dedicated to being one of those mentors one day.”
Erin Shimoda: Guiding Astronauts to Safety
Erin Shimoda’s path to becoming an aerospace engineer did not start with a clear vision of her future. Growing up in a family full of engineers and scientists, she was already on the STEM path, but she did not know where to focus. HAS changed that.
“HAS exposed me to so many different things that an aerospace engineer does,” she said. “I learned about the history of humans in space, NASA’s missions, how to design 3D models, how to apply equations from math class to real-life scenarios.”
During the program’s summer experience, she and her team designed a mission to send humans to Mars. She credits the program with inspiring her to earn an aerospace engineering degree.
Official portrait of Erin Shimoda. NASA/Josh Valcarcel The HAS program also reshaped her understanding of what a STEM career could look like. “My mentors were incredible. They talked about their projects with such energy and passion. It made me want to feel that way about my own work,” she said. “I didn’t realize before how exciting and innovative working in STEM could be.”
Shimoda said every person she met through HAS was inspiring. “Just knowing that those people existed and worked at NASA helped push me to persevere and succeed in my undergraduate career. I had plenty of bumps in the road, but I had a goal in mind that others had achieved before me, so I knew I could, too.”
One of the biggest lessons she took from the program was the power of collaboration. In high school, she often felt like she was carrying the load on group projects, which left her with a negative view of working on a team. HAS changed that perspective.
“During HAS, everyone was very passionate about accomplishing our goal, so I was consistently supported by my peers,” she said. “That’s so true at NASA, too. Not one single person can build an entire mission to the Moon. We’re all so passionate about accomplishing the mission, so we always support each other and strive for excellence.”
Shimoda also saw firsthand how diverse perspectives lead to better results. “There are many ways to come to a solution, and not every solution is right,” she said. “Collaboration leads to innovation and better problem-solving.”
Erin Shimoda stands in front of a presentation on the Launch Abort System for NASA’s Orion spacecraft and Space Launch System rocket.NASA/Robert Markowitz Now, Shimoda plays a key role in NASA’s Orion Program, ensuring astronaut safety through comprehensive ascent abort planning and procedures, and supporting Artemis recovery operations. She works on guidance, navigation, and control, predicting where the crew module and recovery hardware will land so teams—including the U.S. Navy—are in the right place at the right time.
“It’s exciting because we get to go ‘in the field’ on a U.S. Navy ship during training. Last year, I spent a week on a Navy ship, and seeing everything come together was incredible,” she said.
Her advice for students exploring STEM? “Try every opportunity possible! I joined almost every club imaginable. When I saw the HAS poster in front of my high school’s library, I thought to myself, ‘Well, I’m not in anything space-related yet!’ and the rest is history.”
Looking ahead, she is eager for what is to come. “I’m especially excited for Artemis III, where I’ll be directly involved in recovery operations,” Shimoda said. “I hope that all this work propels us to a future with a sustained human presence on the Moon.”
Hallel Chery: Aspiring Astronaut and Emerging Leader
Hallel Chery is a high school senior who will pursue a degree in mechanical engineering and materials science at Harvard College, with her sights set on becoming both an engineer and an astronaut.
She completed all three stages of HAS: the online course, the virtual Moonshot challenge, and the five-day on-site experience at Johnson. Balancing the program with academics and leading a school-wide tutoring club pushed her limits—but also broadened her confidence.
“I learned that I could take on a tremendous amount of work at one time,” she said. “This realization has helped me become more ambitious in my future plans.”
A portrait of Hallel Chery during her time in the High School Aerospace Scholars program. Moonshot was her proving ground. Tasked with redesigning a module for NASA’s future Gateway lunar space station, she led a team of eight HAS scholars—none of whom she had met before—through an intense, weeklong mission. Their work was presented to NASA scientists and engineers and her group landed among the top teams in the challenge.
“The experience strengthened my confidence in my abilities as a leader,” said Chery. “I learned that I thrive under pressure and am well prepared to tackle any challenge, technical or interpersonal, no matter how difficult it is.”
“Moonshot exposed me for the first time to true, deep teamwork,” she said. “Interacting almost non-stop with the same people over one week in a high stakes situation truly taught me about the dynamics of how teams work, the value of teamwork, and being an effective leader. This, coupled with the program’s emphasis on the importance of teamwork have firmly ingrained in me the essentiality of this core NASA value.”
While at Johnson, Chery toured the Space Vehicle Mockup Facility, watched astronauts suit up at the Neutral Buoyancy Laboratory, and visited the Mission Control Center. “Spending only a few days at Johnson, I can truly say that as an aspiring astronaut, being there felt just like home,” Chery said.
Hallel Chery in a spacesuit mockup at Johnson Space Center. “Because of HAS, I directly visualize myself working in a team to solve the problems I wanted to tackle instead of primarily focusing on the individual accomplishments that will solve them,” she said. “The program taught me how essential teamwork is to effective problem solving and innovation.”
The advice she has for the next generation is to keep exploring and to answer the question: What do you want to contribute for the good of the world?
HAS also introduced her to professional networking early in her academic career. Engaging with NASA professionals provided insight into the agency’s work culture and internship opportunities.
Now, as she prepares for her future in mechanical engineering and materials science, Chery is determined to apply what she has learned.
She is particularly grateful for the mentorship of NASA consultant Gotthard Janson, who provided encouragement and guidance throughout the HAS journey.
“The opportunity to connect with great professionals like him has provided additional wisdom and support as I grow through my academic and professional career,” she said.
Looking ahead, Chery aims to design space habitats, create innovative exercise solutions, and develop advanced materials for use in space.
“I want to help propel humanity forward—on Earth, to the Moon, Mars, and beyond—while inspiring others in the Artemis Generation,” she said. “Building and launching my rocket at Johnson felt like launching my future—one dedicated to contributing to NASA and humanity.”
Johnson Space Center will showcase its achievements at the Texas Capitol for Space Day Texas on Tuesday, March 25. The High School Aerospace Scholars program will have a booth, and NASA will have interactive exhibits highlighting the programs and technologies that will help humanity push forward to the Moon and Mars.
Learn more about NASA’s involvement here.
View the full article
-
By NASA
Credit: NASA The Aerospace Safety Advisory Panel (ASAP), an advisory committee that reports to NASA and Congress, issued its 2024 annual report Thursday examining the agency’s safety performance, accomplishments, and challenges during the past year.
The report highlights 2024 activities and observations on NASA’s work, including:
strategic vision and agency governance Moon to Mars management future of U.S. presence in low Earth orbit health and medical risks in human space exploration “Over the past year, NASA has continued to make meaningful progress toward meeting the intent of the broad-ranging recommendations the panel has made over the last several years,” said retired U.S. Air Force Lt. Gen. Susan J. Helms, chair of ASAP. “We believe that the agency’s careful attention to vision, strategy, governance, and program management is vital to the safe execution of NASA’s complex and critical national mission.”
This year’s report reflects the panel’s continued focus on NASA’s strategies for risk management and safety culture in an environment of growing space commercialization. Specifically, the panel cites its 2021 recommendations for NASA on preparing for future challenges in a changing landscape, including the need to evaluate NASA’s approach to safety and technical risk and to evolve its role, responsibilities, and relationships with private sector and international partners.
Overall, the panel finds NASA is continuing to make progress with respect to the agency’s strategic vision, approach to governance, and integrated program management. The NASA 2040 new agencywide initiative is working to operationalize the agency’s vision and strategic objectives across headquarters and centers. With the establishment of NASA’s Moon to Mars Program Office in 2023, it finds NASA has implemented safety and risk management as a key focus for NASA’s Artemis campaign.
The 2024 report provides details on the concrete actions the agency should take to fulfill its previous recommendations and spotlights its recommendations for the agency moving ahead. It addresses safety assessments for Moon to Mars and current International Space Station operations, as well as risk-related issues surrounding NASA’s planned transition to commercial low Earth orbit destinations.
It covers relevant areas of human health and medicine in space and the impact of budget constraints and uncertainty on safety.
The annual report is based on the panel’s 2024 fact-finding and quarterly public meetings; direct observations of NASA operations and decision-making; discussions with NASA management, employees, and contractors; and the panel members’ experiences.
Congress established the panel in 1968 to provide advice and make recommendations to the NASA administrator on safety matters after the 1967 Apollo 1 fire claimed the lives of three American astronauts.
To learn more about the ASAP, and view annual reports, visit:
https://www.nasa.gov/asap
-end-
Jennifer Dooren / Elizabeth Shaw
Headquarters, Washington
202-358-1600
jennifer.m.dooren@nasa.gov / elizabeth.a.shaw@nasa.gov
Share
Details
Last Updated Feb 06, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
Aerospace Safety Advisory Panel View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
2025 Seminar Series
Throughout 2025, the NASA History Office is presenting a seminar series on the topic of Aerospace Latin America. This series will explore the origins, evolution, and historical context of aerospace in the region since the dawn of the Space Age, touching on a broad range of topics including aerospace infrastructure development, space policy and law, Earth science applications, and much more.
This seminar series is part of a collaborative effort to gather insights and research that will conclude in an anthology of essays to be published as a NASA History Special Publication. Individual presentations will be held virtually bi-weekly or monthly.
During a gravity assist in 1992, the Galileo spacecraft took images of Earth and the Moon. Separate images were combined to generate this composite which features a view of the Pacific Ocean and Central and South America.NASA/JPL/USGS Upcoming Presentations
“Governing the Moon: A History”
Stephen Buono (University of Chicago)
Thursday, February 6 at 1pm CST
In this talk, Stephen Buono will provide a nuanced history of the unratified Agreement Governing the Activities of States on the Moon and Other Celestial Bodies, more commonly known as the Moon Treaty. Buono will illuminate the treaty’s deep origins, the contributions of international space lawyers, the details of the negotiating process, the role played by the United States in shaping the final text, and the contributions of the treaty’s single most important author, Argentine lawyer, Aldo Armando Cocca.
“A God’s Eye View: Aviators and the Re-Conquest of Latin America”
Pete Soland(University of Houston—Downtown)
Thursday, February 20 at 1pm CST
This talk scrutinizes the aviator-conquistador metaphor. It examines airplane pilots as personifying high modernism and the technological sublime in Latin America from the turn of the century through the early Space Age, when spaceships and astronauts eclipsed airplanes and aviators. Repeated invocations of the conquistador as a metaphor for the aviator’s social role–and the conquest as an analogy for the goals of aviation programs–illustrate how elites promoted their modernization initiatives to national publics.
How to Attend
These presentations will be held via Microsoft Teams. For details on how to attend the meetings, join the NASA History mailing list to receive updates. Just send a blank email to history-join@lists.hq.nasa.gov to join. Alternatively, send us an email to receive a link for the next meeting.
More News from the NASA History Office Share
Details
Last Updated Jan 16, 2025 Related Terms
NASA History Events View the full article
-
By NASA
NASA’s Office of STEM Engagement at Johnson Space Center in Houston offers students a unique gateway to opportunity through the High School Aerospace Scholars (HAS) program. The initiative provides Texas juniors with hands-on experience in space exploration, working on projects ranging from rocket building to problem-solving in collaborative teams.
The stories of HAS alumni highlight the program’s impact, showcasing how it has opened doors to diverse careers in STEM and inspired graduates to empower others.
Johnson Community Engagement Lead Jessica Cordero, who served as the manager of the HAS program from 2018 to 2021, reflected on her time with the students:
“I had the privilege of working with so many incredible students who brought imagination and determination to their dreams,” she said. “During HAS, they connected with peers who shared their passion for NASA and STEM, and by the time they completed the program, they had a clear vision of the degrees they would pursue in college. These students are the Artemis Generation—we are in great hands!”
Meet Former HAS Student Neel Narayan
For Neel Narayan, NASA’s HAS program was a transformative experience that reshaped his understanding of space exploration and his place within it.
Through his time in the program, Narayan learned to navigate complex challenges with confidence. “My experience working with difficult information at HAS, combined with having mentors explain the unknown, taught me to be okay with confusion and comfortable with solving hard problems,” he said. “That’s what STEM is all about.”
Neel Narayan at NASA’s High School Aerospace Scholars (HAS) 20th anniversary ceremony. Before participating in the program, Narayan had a narrow view of what a STEM career entailed: long equations and solitary hours behind a computer. HAS completely dismantled that misconception. He said the program, “broke the most complex concepts into granular bites of digestible information, showing that complexity can be distilled if done correctly.”
“During the one-week onsite experience, I was talking to scientists, building rockets, and exploring NASA facilities—none of which involved equations!” he said. “HAS taught me that STEM is not confined to technical work.”
Narayan describes HAS as an eye-opening experience that redefined his approach to problem-solving. “Most of us are unaware of what we don’t know,” he said. “In collaborating with others, I was made aware of solutions that I didn’t know existed. The greatest asset you can have when solving a problem is another person.”
He credits the HAS community, especially his fellow scholars, with shaping his academic and professional growth. “I benefited most from the networking opportunities, particularly with the other HAS scholars in my cohort,” he said. “For those of us studying together in California, we’ve met up to discuss work, school, and external opportunities. Everyone in the program comes out very successful, and I’m grateful to have met those people and to still stay in touch with them.”
For high school students considering STEM but unsure of their direction, Narayan offers simple advice: keep exploring. “You don’t need to know your career path yet—in fact, you shouldn’t,” he said. “There is no better field to explore than STEM because of its vastness.”
Neel Narayan, University of Stanford. Narayan is currently pursuing a master’s degree in computational and mathematical engineering at Stanford University after earning an undergraduate degree in computer science. With his graduate program, Narayan is building on the foundation he developed through NASA’s HAS program.
Narayan aspires to contribute to the agency’s innovation and groundbreaking work. “NASA’s research changes the world, and being part of that mission is a dream I’ve had for a while,” he said.
Meet Sarah Braun
NASA’s HAS program solidified Sarah Braun’s understanding of how a STEM career could encompass her diverse interests, from design and education to plotting spacecraft orbits and planning launches. From her time in HAS to her current space exploration career, Braun believes STEM can be as multifaceted as the people who pursue it.
“HAS showed me the options ahead were as endless as my imagination,” she said. “The program convinced me that all my skills would be put to use in STEM, including getting to be creative and artistic.”
Sarah Braun engages in science, technology, engineering, and mathematics outreach at the Air Zoo Aerospace & Science Museum in Portage, Michigan, standing beside a Gemini model. The program gave her the opportunity to network, problem-solve, and collaborate with students from various backgrounds. “Learning how to communicate designs I could picture in my head was the biggest challenge, but by observing my teammates and mentors, I built the skills I needed.”
The networking opportunities she gained through HAS have also been instrumental to her academic and career growth. “The mentors I met through HAS have supported me throughout college and into my early career,” she said. “They taught me countless technical skills and how to best take advantage of my college years. I would never have made it to where I am today without HAS!”
After completing the HAS program, Braun interned with NASA, where she worked on space systems and paved the way for her career at Collins Aerospace.
Sarah Braun at the National Museum of the U.S. Air Force in Dayton, Ohio. She stands in front of the hardware she now works on at Collins Aerospace. Braun advises high school students uncertain about their career paths to get engaged and ask questions. “There are so many people out there who pursue STEM to follow a passion or challenge themselves,” she said. “Talking with people about what they have experienced and learned has been a huge help and inspiration for me throughout the years.”
She is also passionate about inspiring and educating others. “Whether I’m leading after-school STEM clubs or mentoring students, outreach and teaching have become my biggest contributions to NASA’s mission of exploration and discovery,” said Braun.
Meet Audrey Scott
Audrey Scott credits the HAS program with giving her a chance to explore science in the real world. “I experienced the excitement space could bring through livestream events like the landing of NASA’s InSight Lander mission and Cassini’s Grand Finale,” she said.
Audrey Scott, front, with fellow 2019 HAS graduates. Scott shared that the HAS program opened her eyes to the vast possibilities within STEM fields. Seeing the many ways to apply a STEM degree in practice broadened her perspective and inspired her to pursue her passion.
After HAS, Scott chose to study astrophysics at the University of Chicago in Illinois, where she is now pursuing her Ph.D. in experimental cosmology and laying the groundwork for a future in space exploration.
“My time with HAS and its encouragement of STEM excellence gave me the confidence I needed to take the plunge,” said Scott.
The program also transformed her approach to teamwork and exposed her to fast-paced problem-solving. “My school didn’t prioritize group projects, so working with people from all different backgrounds and personalities was informative for my future work in college,” she said. “HAS was a safe space to experiment with being both a leader and collaborator.”
She encourages high school students uncertain of their path to “try everything.” Scott advises, “If you have a moment of fascination, take advantage of that intellectual and creative energy, and learn something new. Time spent realizing you don’t like something is just as useful as time spent realizing you do.” She also recommends seeking out resources, finding mentors, and talking to everyone.
Scott continues to connect with some of her HAS cohort, especially young women navigating STEM paths alongside her. “We’ve been able to support each other through challenges,” she said. “Being part of HAS made me, in a way, part of the NASA family.”
Audrey Scott, front, with fellow 2019 HAS graduates. Scott’s HAS experience opened doors to opportunities like the Brooke Owens Fellowship, where she worked on a satellite in partnership with NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and later the Illinois Space Grant award, which took her to NASA’s Jet Propulsion Laboratory in Southern California. She envisions part of her thesis research as a Ph.D. candidate taking place at a NASA center and remains open to a future at the agency.
“I’ll continue advocating for space exploration and pushing the boundaries of what’s known,” she said. “In my research, I’m driven by questions like, ‘What did the beginning of the universe look like—and why are we here?’”
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.