Members Can Post Anonymously On This Site
They Grow So Fast: Moon Tree Progress Since NASA’s Artemis I Mission
-
Similar Topics
-
By NASA
NASA/Michael DeMocker The full moon rises over the Superdome and the city of New Orleans, Louisiana on Monday evening, January 13, 2025.
New Orleans is home to NASA’s Michoud Assembly Facility where several pieces of hardware for the SLS (Space Launch system) are being built. For more than half a century, NASA Michoud has been “America’s Rocket Factory,” the nation’s premiere site for manufacturing and assembly of large-scale space structures and systems.
See more photos from NASA Michoud.
Image credit: NASA/Michael DeMocker
View the full article
-
By NASA
NASA This Feb. 5, 1971, photo gives an excellent view of the Apollo 14 lunar module on the Moon’s surface after landing. At left, we can see that the astronauts – Alan Shepard and Edgar Mitchell – deployed the U.S. flag before taking this photo of the lunar module.
Shepard and Mitchell touched down in the Fra Mauro highlands region and conducted two moonwalks lasting more than nine hours in total. They set up an experiment package and collected 93 pounds of rock and soil samples to return to waiting scientists on Earth. In the meantime, astronaut Stuart Roosa, who remained in orbit aboard the command module, conducted observations and photography of the lunar surface from orbit. After their 33-hour lunar surface stay, Shepard and Mitchell rejoined Roosa in orbit, and left lunar orbit for the three-day return trip to Earth.
Image credit: NASA
View the full article
-
By European Space Agency
Video: 00:00:40 Back in 2023, we reported on Solar Orbiter’s discovery of tiny jets near the Sun’s south pole that could be powering the solar wind. The team behind this research has now used even more data from the European Space Agency’s prolific solar mission to confirm that these jets exist all over dark patches in the Sun’s atmosphere, and that they really are a source of not only fast but also slow solar wind.
The newfound jets can be seen in this sped-up video as hair-like wisps that flash very briefly, for example within the circled regions of the Sun's surface. In reality they last around one minute and fling out charged particles at about 100 km/s.
The surprising result is published today in Astronomy & Astrophysics, highlighting how Solar Orbiter’s unique combination of instruments can unveil the mysteries of the star at the centre of our Solar System.
The solar wind is the never-ending rain of electrically charged particles given out by the Sun. It pervades the Solar System and its effects can be felt on Earth. Yet despite decades of study, its origin remained poorly understood. Until now.
The solar wind comes in two main forms: fast and slow. We have known for decades that the fast solar wind comes from the direction of dark patches in the Sun’s atmosphere called coronal holes – regions where the Sun’s magnetic field does not turn back down into the Sun but rather stretches deep into the Solar System.
Charged particles can flow along these ‘open’ magnetic field lines, heading away from the Sun, and creating the solar wind. But a big question remained: how do these particles get launched from the Sun in the first place?
Building upon their previous discovery, the research team (led by Lakshmi Pradeep Chitta at the Max Planck Institute for Solar System Research, Germany) used Solar Orbiter’s onboard ‘cameras’ to spot more tiny jets within coronal holes close to the Sun’s equator.
By combining these high-resolution images with direct measurements of solar wind particles and the Sun’s magnetic field around Solar Orbiter, the researchers could directly connect the solar wind measured at the spacecraft back to those exact same jets.
What’s more, the team was surprised to find not just fast solar wind coming from these jets, but also slow solar wind. This is the first time that we can say for sure that at least some of the slow solar wind also comes from tiny jets in coronal holes – until now, the origin of the solar wind had been elusive.
The fact that the same underlying process drives both fast and slow solar wind comes as a surprise. The discovery is only possible thanks to Solar Orbiter’s unique combination of advanced imaging systems, as well as its instruments that can directly detect particles and magnetic fields.
The measurements were taken when Solar Orbiter made close approaches to the Sun in October 2022 and April 2023. These close approaches happen roughly twice a year; during the next ones, the researchers hope to collect more data to better understand how these tiny jets ‘launch’ the solar wind.
Solar Orbiter is a space mission of international collaboration between ESA and NASA, operated by ESA. This research used data from Solar Orbiter’s Extreme Ultraviolet Imager (EUI), Polarimetric and Helioseismic Imager (PHI), Solar Wind Plasma Analyser (SWA) and Magnetometer (MAG). Find out more about the instruments Solar Orbiter is using to reveal more about the Sun.
Read our news story from 2023 about how Solar Orbiter discovered tiny jets that could power the solar wind
Read more about how Solar Orbiter can trace the solar wind back to its source region on the Sun
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Launch of Blue Origin’s New Shepard suborbital rocket system on Feb. 4, 2025. During the flight test, the capsule at the top detached from the booster and spun at approximately 11 rpm to simulate lunar gravity for the NASA-supported payloads inside.Blue Origin The old saying — “Practice makes perfect!” — applies to the Moon too. On Tuesday, NASA gave 17 technologies, instruments, and experiments the chance to practice being on the Moon… without actually going there. Instead, it was a flight test aboard a vehicle adapted to simulate lunar gravity for approximately two minutes.
The test began on February 4, 2025, with the 10:00 a.m. CST launch of Blue Origin’s New Shepard reusable suborbital rocket system in West Texas. With support from NASA’s Flight Opportunities program, the company, headquartered in Kent, Washington, enhanced the flight capabilities of its New Shepard capsule to replicate the Moon’s gravity — which is about one-sixth of Earth’s — during suborbital flight.
“Commercial companies are critical to helping NASA prepare for missions to the Moon and beyond,” said Danielle McCulloch, program executive of the agency’s Flight Opportunities program. “The more similar a test environment is to a mission’s operating environment, the better. So, we provided substantial support to this flight test to expand the available vehicle capabilities, helping ensure technologies are ready for lunar exploration.”
NASA’s Flight Opportunities program not only secured “seats” for the technologies aboard this flight — for 16 payloads inside the capsule plus one mounted externally — but also contributed to New Shepard’s upgrades to provide the environment needed to advance their readiness for the Moon and other space exploration missions.
“An extended period of simulated lunar gravity is an important test regime for NASA,” said Greg Peters, program manager for Flight Opportunities. “It’s crucial to reducing risk for innovations that might one day go to the lunar surface.”
One example is the LUCI (Lunar-g Combustion Investigation) payload, which seeks to understand material flammability on the Moon compared to Earth. This is an important component of astronaut safety in habitats on the Moon and could inform the design of potential combustion devices there. With support from the Moon to Mars Program Office within the Exploration Systems Development Mission Directorate, researchers at NASA’s Glenn Research Center in Cleveland, together with Voyager Technologies, designed LUCI to measure flame propagation directly during the Blue Origin flight.
The rest of the NASA-supported payloads on this Blue Origin flight included seven from NASA’s Game Changing Development program that seek to mitigate the impact of lunar dust and to perform construction and excavation on the lunar surface. Three other NASA payloads tested instruments to detect subsurface water on the Moon as well as to study flow physics and phase changes in lunar gravity. Rounding out the manifest were payloads from Draper, Honeybee Robotics, Purdue University, and the University of California in Santa Barbara.
Flight Opportunities is part of the agency’s Space Technology Mission Directorate and is managed at NASA’s Armstrong Flight Research Center.
By Nancy Pekar, NASA’s Flight Opportunities program
Keep Exploring Discover More …
Space Technology Mission Directorate
Armstrong Flight Research Center
Flight Opportunities
Game Changing Development
Share
Details
Last Updated Feb 04, 2025 EditorLoura HallContactNancy J. Pekarnancy.j.pekar@nasa.gov Related Terms
Ames Research Center Armstrong Flight Research Center Artemis Flight Opportunities Program Game Changing Development Program Space Technology Mission Directorate View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.