Jump to content

NASA Performs First Aircraft Accident Investigation on Another World


Recommended Posts

  • Publishers
Posted

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

NASA’s Ingenuity Mars Helicopter
NASA’s Ingenuity Mars Helicopter, right, stands near the apex of a sand ripple in an image taken by Perseverance on Feb. 24, 2024, about five weeks after the rotorcraft’s final flight. Part of one of Ingenuity’s rotor blades lies on the surface about 49 feet (15 meters) west of helicopter (at left in image).
NASA/JPL-Caltech/LANL/CNES/CNRS

The review takes a close look the final flight of the agency’s Ingenuity Mars Helicopter, which was the first aircraft to fly on another world.

Engineers from NASA’s Jet Propulsion Laboratory in Southern California and AeroVironment are completing a detailed assessment of the Ingenuity Mars Helicopter’s final flight on Jan. 18, 2024, which will be published in the next few weeks as a NASA technical report. Designed as a technology demonstration to perform up to five experimental test flights over 30 days, Ingenuity was the first aircraft on another world. It operated for almost three years, performed 72 flights, and flew more than 30 times farther than planned while accumulating over two hours of flight time.

The investigation concludes that the inability of Ingenuity’s navigation system to provide accurate data during the flight likely caused a chain of events that ended the mission. The report’s findings are expected to benefit future Mars helicopters, as well as other aircraft destined to operate on other worlds.

NASA’s Ingenuity Mars Helicopter used its black-and-white navigation camera to capture this video on Feb. 11, 2024, showing the shadow of its rotor blades. The imagery confirmed damage had occurred during Flight 72.
NASA/JPL-Caltech

Final Ascent

Flight 72 was planned as a brief vertical hop to assess Ingenuity’s flight systems and photograph the area. Data from the flight shows Ingenuity climbing to 40 feet (12 meters), hovering, and capturing images. It initiated its descent at 19 seconds, and by 32 seconds the helicopter was back on the surface and had halted communications. The following day, the mission reestablished communications, and images that came down six days after the flight revealed Ingenuity had sustained severe damage to its rotor blades.

What Happened

“When running an accident investigation from 100 million miles away, you don’t have any black boxes or eyewitnesses,” said Ingenuity’s first pilot, Håvard Grip of JPL. “While multiple scenarios are viable with the available data, we have one we believe is most likely: Lack of surface texture gave the navigation system too little information to work with.”

The helicopter’s vision navigation system was designed to track visual features on the surface using a downward-looking camera over well-textured (pebbly) but flat terrain. This limited tracking capability was more than sufficient for carrying out Ingenuity’s first five flights, but by Flight 72 the helicopter was in a region of Jezero Crater filled with steep, relatively featureless sand ripples.

This short animation depicts a NASA concept for a proposed follow-on to the agency’s Ingenuity Mars Helicopter called Mars Chopper, which remains in early conceptual and design stages. In addition to scouting, such a helicopter could carry science instruments to study terrain rovers can’t reach.

One of the navigation system’s main requirements was to provide velocity estimates that would enable the helicopter to land within a small envelope of vertical and horizontal velocities. Data sent down during Flight 72 shows that, around 20 seconds after takeoff, the navigation system couldn’t find enough surface features to track.

Photographs taken after the flight indicate the navigation errors created high horizontal velocities at touchdown. In the most likely scenario, the hard impact on the sand ripple’s slope caused Ingenuity to pitch and roll. The rapid attitude change resulted in loads on the fast-rotating rotor blades beyond their design limits, snapping all four of them off at their weakest point — about a third of the way from the tip. The damaged blades caused excessive vibration in the rotor system, ripping the remainder of one blade from its root and generating an excessive power demand that resulted in loss of communications.

This graphic depicts the most likely scenario for the hard landing of NASA’s Ingenuity Mars Helicopter
This graphic depicts the most likely scenario for the hard landing of NASA’s Ingenuity Mars Helicopter during its 72nd and final flight on Jan. 18, 2024. High horizontal velocities at touchdown resulted in a hard impact on a sand ripple, which caused Ingenuity to pitch and roll, damaging its rotor blades.
NASA/JPL-Caltech

Down but Not Out

Although Flight 72 permanently grounded Ingenuity, the helicopter still beams weather and avionics test data to the Perseverance rover about once a week. The weather information could benefit future explorers of the Red Planet. The avionics data is already proving useful to engineers working on future designs of aircraft and other vehicles for the Red Planet.

“Because Ingenuity was designed to be affordable while demanding huge amounts of computer power, we became the first mission to fly commercial off-the-shelf cellphone processors in deep space,” said Teddy Tzanetos, Ingenuity’s project manager. “We’re now approaching four years of continuous operations, suggesting that not everything needs to be bigger, heavier, and radiation-hardened to work in the harsh Martian environment.”

Inspired by Ingenuity’s longevity, NASA engineers have been testing smaller, lighter avionics that could be used in vehicle designs for the Mars Sample Return campaign. The data is also helping engineers as they research what a future Mars helicopter could look like — and do.

During a Wednesday, Dec. 11, briefing at the American Geophysical Union’s annual meeting in Washington, Tzanetos shared details on the Mars Chopper rotorcraft, a concept that he and other Ingenuity alumni are researching. As designed, Chopper is approximately 20 times heavier than Ingenuity, could fly several pounds of science equipment, and autonomously explore remote Martian locations while traveling up to 2 miles (3 kilometers) in a day. (Ingenuity’s longest flight was 2,310 feet, or 704 meters.)

“Ingenuity has given us the confidence and data to envision the future of flight at Mars,” said Tzanetos.

More About Ingenuity

The Ingenuity Mars Helicopter was built by JPL, which also manages the project for NASA Headquarters. It is supported by NASA’s Science Mission Directorate. NASA’s Ames Research Center in California’s Silicon Valley and NASA’s Langley Research Center in Hampton, Virginia, provided significant flight performance analysis and technical assistance during Ingenuity’s development. AeroVironment, Qualcomm, and SolAero also provided design assistance and major vehicle components. Lockheed Space designed and manufactured the Mars Helicopter Delivery System. At NASA Headquarters, Dave Lavery is the program executive for the Ingenuity Mars helicopter.

For more information about Ingenuity:

https://mars.nasa.gov/technology/helicopter

News Media Contacts

DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov

Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov

2024-171

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Advanced Composites Consortium team members gathered during May 2025 at NASA’s Langley Research Center in Virginia for a technical review of activities in the Hi-Rate Composite Aircraft Manufacturing project.NASA NASA and its partners in the Advanced Composites Consortium gathered at the agency’s Langley Research Center in Hampton, Virginia, on April 29-May 1, 2025.
      Team members from 22 organizations in the public-private partnership are collaborating to increase the production rate of composite aircraft, reduce costs, and improve performance.
      The team discussed results from the Technology Development Phase of NASA’s Hi-Rate Composite Aircraft Manufacturing (HiCAM) project.
      The project is evaluating concepts and competing approaches at the subcomponent scale to determine technologies with the greatest impact on manufacturing rate and cost. The most promising concepts will be demonstrated on full-scale wing and fuselage components during the next four years. 
      Through collaboration and shared investment, the team is increasing the likelihood of technologies being adopted for next-generation transports, ultimately lowering costs for operators and improving the U.S. competitive advantage in the commercial aircraft industry.
      Want to Learn More About Composite Aircraft Research?
      Go to the HiCAM project page here Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      2 min read NASA Composite Manufacturing Initiative Gains Two New Members
      Article 9 months ago 1 min read HiCAM 2023 Spring Review
      Article 2 years ago 1 min read HiCAM Research Team at Electroimpact
      HiCAM Research Team at Electroimpact
      Article 2 years ago Keep Exploring Discover More Topics From NASA
      Missions
      Artemis
      Aeronautics STEM
      Explore NASA’s History
      Share
      Details
      Last Updated May 13, 2025 EditorJim BankeContactShannon Eichornshannon.eichorn@nasa.gov Related Terms
      Hi-Rate Composite Aircraft Manufacturing View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      El piloto de pruebas de la NASA Nils Larson inspecciona el avión de investigación F-15D de la agencia en el Centro de Investigación de Vuelo Armstrong de la NASA en Edwards, California, antes de un vuelo de calibración para una sonda de detección de impactos de campo cercano recién instalada. Montada en el F-15D, la sonda está diseñada para medir las ondas de choque generadas por el silencioso avión supersónico X-59 durante el vuelo. Los datos ayudarán a los investigadores a comprender mejor cómo se comportan las ondas de choque en las proximidades de la aeronave, apoyando la misión Quesst de la NASA para permitir vuelos supersónicos silenciosos sobre tierra.NASA/Steve Freeman El piloto de pruebas de la NASA Nils Larson inspecciona el avión de investigación F-15D de la agencia en el Centro de Investigación de Vuelo Armstrong de la NASA en Edwards, California, antes de un vuelo de calibración para una sonda de detección de impactos de campo cercano recién instalada. Montada en el F-15D, la sonda está diseñada para medir las ondas de choque generadas por el silencioso avión supersónico X-59 durante el vuelo. Los datos ayudarán a los investigadores a comprender mejor cómo se comportan las ondas de choque en las proximidades de la aeronave, apoyando la misión Quesst de la NASA para permitir vuelos supersónicos silenciosos sobre tierra.NASA/Steve Freeman El avión de investigación F-15D de la NASA realiza un vuelo de prueba cerca de Edwards, California, con una sonda de detección de impactos de campo cercano. Idéntica a una versión previamente volada que estaba prevista como reserva, esta nueva sonda captará datos de ondas de choque cerca del X-59 mientras vuela a velocidad más rápida que la del sonido apoyando la misión Quesst de la NASA.NASA/Jim Ross El avión de investigación F-15D de la NASA realiza un vuelo de prueba cerca de Edwards, California, con una sonda de detección de impactos de campo cercano. Idéntica a una versión previamente volada que estaba prevista como reserva, esta nueva sonda captará datos de ondas de choque cerca del X-59 mientras vuela a velocidad más rápida que la del sonido apoyando la misión Quesst de la NASA.NASA/Jim Ross Read this story in English here.
      Cuando se prueba un avión de última generación de la NASA, se necesitan herramientas especializadas para realizar pruebas y capturar datos, pero si esas herramientas necesitan mantenimiento, hay que esperar hasta que se reparen. A menos que tengas un respaldo. Por eso, recientemente la NASA ha calibró una nueva sonda de deteccíon de impactos para capturar datos de ondas de choque cuando el silencioso avión de investigación supersónico X-59 de la agencia inicie sus vuelos de prueba. 
      Cuando un avión vuela más rápido que la velocidad del sonido, produce ondas de choque que viajan a través del aire, creando fuertes estampidos sónicos. El X-59 desviará esas ondas de choque, produciendo sólo un silencioso golpe supersónico. En las últimas semanas, la NASA ha completado los vuelos de calibración de una nueva sonda de detección de impactos de campo cercano, un aparato en forma de cono que captará datos sobre las ondas de choque que generará el X-59. 
      Esta sonda está montada en un avión de investigación F-15D que volará muy cerca del X-59 para recopilar los datos que necesita la NASA. La nueva unidad servirá como la sonda de campo cercano principal de la NASA, con un modelo idéntico desarrollado por la NASA el año pasado actuará como reserva montada en otro F-15B. 
      Las dos unidades significan que el equipo del X-59 tiene una alternativa lista en caso de que la sonda principal necesite mantenimiento o reparaciones. Para pruebas de vuelo como las del X-59, donde la recopilación de datos es crucial y las operaciones giran en torno a plazos ajustados, condiciones meteorológicas y otras variables, las copias de respaldo de los equipos críticos ayudan a garantizar la continuidad, mantener los plazos y preservar la eficiencia de las operaciones. 
      “Si le ocurre algo a la sonda, como una falla en unsensor, no hay una solución fácil,” explica Mike Frederick, investigador principal de la sonda en el Centro de Investigación de Vuelos Armstrong de la NASA en Edwards, California. “El otro factor es el propio avión. Si uno necesita mantenimiento, no queremos retrasar los vuelos del X-59.” 
      Para calibrar la nueva sonda, el equipo midió las ondas de choque de un avión de investigación F/A-18 de la NASA. Los resultados preliminares indicaron que la sonda captó con éxito los cambios de presión asociados a las ondas de choque, de acuerdo con las expectativas del equipo. Frederick y su equipo ahora están revisando los datos para confirmar que se alinean con los modelos matemáticos en tierra y cumplen las normas de precisión requeridas para los vuelos X-59. 
      Los investigadores de la NASA en Armstrong se están preparando para vuelos adicionales con las sondas principal y de respaldo en sus aviones F-15. Cada avión volará a velocidad supersónico y recopilará datos de las ondas de choque del otro. El equipo está trabajando para validar tanto la sonda principal como la de respaldo para confirmar la redundancia total;en otras palabras, asegurarse de que tengan un respaldo fiable y listo para usar. 
      Artículo Traducido por: Priscila Valdez
      Share
      Details
      Last Updated May 13, 2025 EditorDede DiniusContactNicolas Cholulanicolas.h.cholula@nasa.gov Related Terms
      Aeronáutica NASA en español Explore More
      5 min read Las carreras en la NASA despegan con las pasantías
      Article 1 day ago 4 min read El X-59 de la NASA completa las pruebas electromagnéticas
      Article 2 months ago 11 min read La NASA identifica causa de pérdida de material del escudo térmico de Orion de Artemis I
      Article 5 months ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Teams at NASA’s Michoud Assembly Facility in New Orleans move a liquid hydrogen tank for the agency’s SLS (Space Launch System) rocket into the factory’s final assembly area on April 22, 2025. The propellant tank is one of five major elements that make up the 212-foot-tall rocket stage. NASA/Steven Seipel NASA completed another step to ready its SLS (Space Launch System) rocket for the Artemis III mission as crews at the agency’s Michoud Assembly Facility in New Orleans recently applied a thermal protection system to the core stage’s liquid hydrogen tank.
      Building on the crewed Artemis II flight test, Artemis III will add new capabilities with the human landing system and advanced spacesuits to send the first astronauts to explore the lunar South Pole region and prepare humanity to go to Mars. Thermal protection systems are a cornerstone of successful spaceflight endeavors, safeguarding human life, and enabling the launch and controlled return of spacecraft.
      The tank is the largest piece of SLS flight hardware insulated at Michoud. The hardware requires thermal protection due to the extreme temperatures during launch and ascent to space – and to keep the liquid hydrogen at minus 423 degrees Fahrenheit on the pad prior to launch.
      “The thermal protection system protects the SLS rocket from the heat of launch while also keeping the thousands of gallons of liquid propellant within the core stage’s tanks cold enough. Without the protection, the propellant would boil off too rapidly to replenish before launch,” said Jay Bourgeois, thermal protection system, test, and integration lead at NASA Michoud. “Thermal protection systems are crucial in protecting all the structural components of SLS during launch and flight.”
      In February, Michoud crews with NASA and Boeing, the SLS core stage prime contractor, completed the thermal protection system on the external structure of the rocket’s liquid hydrogen propellant fuel tank, using a robotic tool in what is now the largest single application in spaceflight history. The robotically controlled operation coated the tank with spray-on foam insulation, distributing 107 feet of the foam to the tank in 102 minutes. When the foam is applied to the core stage, it gives the rocket a canary yellow color. The Sun’s ultraviolet rays naturally “tan” the thermal protection, giving the SLS core stage its signature orange color, like the space shuttle external tank.
      Having recently completed application of the thermal protection system, teams will now continue outfitting the 130-foot-tall liquid hydrogen tank with critical systems to ready it for its designated Artemis III mission. The core stage of SLS is the largest ever built by length and volume, and was manufactured at Michoud using state-of-the-art manufacturing equipment. (NASA/Steven Seipel) While it might sound like a task similar to applying paint to a house or spraying insulation in an attic, it is a much more complex process. The flexible polyurethane foam had to withstand harsh conditions for application and testing. Additionally, there was a new challenge: spraying the stage horizontally, something never done previously during large foam applications on space shuttle external tanks at Michoud. All large components of space shuttle tanks were in a vertical position when sprayed with automated processes.
      Overall, the rocket’s core stage is 212 feet with a diameter of 27.6 feet, the same diameter as the space shuttle’s external tank. The liquid hydrogen and liquid oxygen tanks feed four RS-25 engines for approximately 500 seconds before SLS reaches low Earth orbit and the core stage separates from the upper stage and NASA’s Orion spacecraft.
      “Even though it only takes 102 minutes to apply the spray, a lot of careful preparation and planning is put into this process before the actual application of the foam,” said Boeing’s Brian Jeansonne, the integrated product team senior leader for the thermal protection system at NASA Michoud. “There are better process controls in place than we’ve ever had before, and there are specialized production technicians who must have certifications to operate the system. It’s quite an accomplishment and a lot of pride in knowing that we’ve completed this step of the build process.”
      The core stage of SLS is the largest NASA has ever built by length and volume, and it was manufactured at Michoud using state-of-the-art manufacturing equipment. Michoud is a unique, advanced manufacturing facility where the agency has built spacecraft components for decades, including the space shuttle’s external tanks and Saturn V rockets for the Apollo program.
      Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
      For more information on the Artemis Campaign, visit:
      https://www.nasa.gov/feature/artemis/
      News Media Contact
      Jonathan Deal
      Marshall Space Flight Center, Huntsville, Ala. 
      256-544-0034 
      jonathan.e.deal@nasa.gov
      View the full article
    • By NASA
      Sasha Weston, project support, Small Spacecraft and Distributed Systems program, with the Project and Engineering Support Services II contract with NASA, discusses the program with a participant, right, during Ames Partnership Days on April 29, 2025, at NASA’s Ames Research Center in California’s Silicon Valley. Through partnerships, the program advances technologies that enable small spacecraft to achieve NASA missions in faster and more affordable ways.NASA/Brandon Torres Navarrete On April 29, more than 90 representatives from industry, U.S. federal labs, government agencies, and academia gathered at NASA’s Ames Research Center in California’s Silicon Valley to learn about the center’s groundbreaking research and development capabilities. The three-day event provided insight into the many ways to collaborate with NASA, including tapping into the agency’s singular subject matter expertise and gaining access to state-of-the-art facilities at NASA Ames and centers across the country. Partnerships help the agency to advance technological innovation, enable science, and foster the emerging space economy.
      Terry Fong, senior scientist for autonomous systems at NASA Ames, summed up the objective of the event when he noted, “I don’t believe anyone – government, academia, industry – has a monopoly on good ideas. It’s how you best combine forces to have the greatest effect.”
      Terry Fong, senior scientist at NASA Ames, center, discusses the center’s capabilities in intelligent adaptive systems and potential applications with Jessica Nowinski, chief of the Human Systems Integration division, left, and Alonso Vera, senior technologist, right, on April 29, 2025, at NASA’s Ames Research Center in California’s Silicon Valley.NASA/Brandon Torres Navarrete Author: Jeanne Neal
      Share
      Details
      Last Updated May 13, 2025 Related Terms
      Ames Research Center General Get Involved NASA Centers & Facilities Partner With Us Small Business Innovation Research / Small Business Keep Exploring Discover More Topics From NASA
      SmallSats and CubeSats
      These miniaturized spacecrafts are used to deliver small payloads into space. LTB (Lunar Trailblazer) is an example of a SmallSat…
      Technology and Innovation
      NASA innovates and tests new technology on satellites and planes, helping commercial and academic partners develop better ways to observe…
      Technology Workshops and Events
      SBIR/STTR News & Success Stories
      View the full article
    • By NASA
      Explore This Section Science Science Activation Take a Tour of the Cosmos with… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   4 min read
      Take a Tour of the Cosmos with New Interactives from NASA’s Universe of Learning
      Ready for a tour of the cosmos? NASA’s Universe of Learning has released a new, dynamic way for lifelong learners to explore NASA’s breathtaking images of the universe—ViewSpace interactive Image Tours. ViewSpace has an established track record of providing museums, science centers, libraries, and other informal learning environments with free, web-based videos and digital interactives—like its interactive Image Sliders. These new Image Tours are another unique experience from NASA’s Universe of Learning, created through a collaboration between scientists that operate NASA telescopes and experts well-versed in the most modern methods of learning. Hands-on, self-directed learning resources like these have long been valued by informal learning sites as effective means for engaging and intriguing users with the latest discoveries from NASA’s space telescope missions—while encouraging lifelong learners to continue their passionate exploration of the stars, galaxies, and distant worlds.
      With these new ViewSpace Image Tours, visitors can take breathtaking journeys through space images that contain many exciting stories. The “Center of the Milky Way Galaxy” Tour, for example, uses breathtaking images from NASA’s Hubble, Spitzer, and Chandra X-ray telescopes and includes eleven Tour Stops, where users can interact with areas like “the Brick”—a dense, dark cloud of hydrogen molecules imaged by Spitzer. Another Tour Stop zooms toward the supermassive black hole, Sagittarius A*, offering a dramatic visual journey to the galaxy’s core.
      In other tours, like the “Herbig-Haro 46/47” Tour, learners can navigate through points of interest in an observation from a single telescope mission. In this case, NASA’s James Webb Space Telescope provides the backdrop where lifelong learners can explore superheated jets of gas and dust being ejected at tremendous speeds from a pair of young, forming stars. The power of Webb turns up unexpected details in the background, like a noteworthy distant galaxy famous for its uncanny resemblance to a question mark. Each Interactive Image Tour allows people to examine unique features through videos, images, or graphical overlays to identify how those features have formed in ways that static images alone can’t convey.
      These tours, which include detailed visual descriptions for each Tour Stop, illuminate the science behind the beauty, allowing learners of all ages to develop a greater understanding of and excitement for space science, deepening their engagement with astronomy, regardless of their prior experience. Check out the About the Interactives page on the ViewSpace website for a detailed overview of how to use the Image Tours.
      ViewSpace currently offers three Image Tours, and the collection will continue growing:
      Center of the Milky Way Galaxy:
      Peer through cosmic dust and uncover areas of intense activity near the Milky Way’s core, featuring imagery from the Hubble Space Telescope, Spitzer Space Telescope, and the Chandra X-ray Observatory.
      Herbig-Haro 46/47:
      Witness how a tightly bound pair of young stars shapes their nebula through ejections of gas and dust in an image from the James Webb Space Telescope.
      The Whirlpool Galaxy:
      Explore the iconic swirling arms and glowing core of a stunning spiral galaxy, with insights into star formation, galaxy structure, and more in a Hubble Space Telescope image.
      “The Image Tours are beautiful, dramatic, informational, and easy to use,” explained Sari Custer, Chief of Science and Curiosity at Arizona Science Center. “I’m excited to implement them in my museum not only because of the incredible images and user-friendly features, but also for the opportunity to excite and ignite the public’s curiosity about space.”
      NASA’s Universe of Learning is supported by NASA under cooperative agreement award number NNX16AC65A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn/about-science-activation/
      Select views from various Image Tours. Clockwise from top left: The Whirlpool Galaxy, Center of the Milky Way Galaxy, Herbig-Haro 46/47, detail view in the Center of the Milky Way Galaxy. Share








      Details
      Last Updated May 13, 2025 Editor NASA Science Editorial Team Related Terms
      Science Activation Astrophysics For Educators Explore More
      5 min read NASA’s Webb Reveals New Details, Mysteries in Jupiter’s Aurora


      Article


      1 day ago
      2 min read Hubble Comes Face-to-Face with Spiral’s Arms


      Article


      4 days ago
      7 min read NASA’s Hubble Pinpoints Roaming Massive Black Hole


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
  • Check out these Videos

×
×
  • Create New...