Jump to content

NASA Invites Social Creators for Launch of Two NASA Astrophysical Missions 


Recommended Posts

  • Publishers
Posted
NASA’s SPHEREx observatory
NASA’s SPHEREx observatory undergoes integration and testing at BAE Systems in Boulder, Colorado, in April 2024. The space telescope will use a technique called spectroscopy across the entire sky, capturing the universe in more than 100 colors.
BAE Systems

Registration is open for digital content creators to attend the launch of NASA’s Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer (SPHEREx) mission, and NASA’s Polarimeter to Unify the Corona and Heliosphere (PUNCH) mission. SPHEREx will provide the first all-sky spectral survey, collecting data on more than 450 million galaxies along with more than 100 million stars in the Milky Way in order to explore the origins of the universe. PUNCH is a constellation of four small satellites in low-Earth orbit that will make global, 3D observations of the Sun’s corona to learn how the mass and energy there become solar wind. 

NASA and SpaceX are targeting no earlier than February 2025 for the SPHEREx and PUNCH missions launch on a SpaceX Falcon 9 rocket from Space Launch Complex 4E at Vandenberg Space Force Base in California. 

If your passion is to communicate and engage the world online, then this is the event for you! Seize the opportunity to see and share the SPHEREx and PUNCH missions’ launch. 

A maximum of 50 social media users will be selected to attend this one-day event and will be given access similar to news media. 

NASA Social participants will have the opportunity to: 

  • View the launch of the SPHEREx and PUNCH satellites on a SpaceX Falcon 9 rocket.  
  • Tour NASA facilities at Vandenberg Space Force Base. 
  • Meet and interact with SPHEREx and PUNCH subject matter experts. 
  • Meet fellow space enthusiasts who are active on social media. 

NASA Social registration for the SPHEREx and PUNCH launch opens on Monday, Dec. 9, and the deadline to apply is Monday, Dec. 23 at noon ET. All social applications will be considered on a case-by-case basis. 

APPLY NOW 

Do I need to have a social media account to register? 

Yes. This event is designed for people who: 

  • Actively use multiple social networking platforms and tools to disseminate information to a unique audience. 
  • Regularly produce new content that features multimedia elements. 
  • Have the potential to reach a large number of people using digital platforms, or reach a unique audience, separate and distinctive from traditional news media and/or NASA audiences. 
  • Must have an established history of posting content on social media platforms. 
  • Have previous postings that are highly visible, respected, and widely recognized. 

Users on all social networks are encouraged to use the hashtag #NASASocial. Updates and information about the event will be shared via @NASASocial and @NASA_LSP on X and via posts to LSP’s Facebook

How do I register? 

Registration for this event opens Monday, Dec. 9, and closes Monday, Dec. 23 at noon ET. Registration is for one person only (you) and is nontransferable. Each individual wishing to attend must register separately. Each application will be considered on a case-by-case basis. 

Can I register if I am not a U.S. citizen? 

Because of the security restrictions on the Space Force base, registration is limited to U.S. citizens. If you have a valid permanent resident card, you will be processed as a U.S. citizen. 

When will I know if I am selected? 

After registrations have been received and processed, an email with confirmation information and additional instructions will be sent to those selected. We expect to send the acceptance notifications by Jan. 31. 

What are NASA Social credentials? 

All social applications will be considered on a case-by-case basis. Those chosen must prove through the registration process that they meet specific engagement criteria. 

If you do not make the registration list for this NASA Social, you still can attend the launch offsite and participate in the conversation online.  

What are the registration requirements? 

Registration indicates your intent to travel to Vandenberg Space Force Base in California and attend the one-day event in person. You are responsible for your own expenses for travel, accommodations, food, and other amenities. 

Some events and participants scheduled to appear at the event are subject to change without notice. NASA is not responsible for loss or damage incurred as a result of attending. NASA, moreover, is not responsible for loss or damage incurred if the event is cancelled with limited or no notice. Please plan accordingly. 

Vandenberg is a government facility. Those who are selected will need to complete an additional registration step to receive clearance to enter the secure areas. 

IMPORTANT: To be admitted, you will need to provide two forms of unexpired government-issued identification; one must be a photo ID and match the name provided on the registration. Those without proper identification cannot be admitted

For a complete list of acceptable forms of ID, please visit: NASA Credentialing Identification Requirements

All registrants must be at least 18 years old. 

What if the launch date changes? 

Many different factors can cause a scheduled launch date to change multiple times. If the launch date changes, NASA may adjust the date of the NASA Social accordingly to coincide with the new target launch date. NASA will notify registrants of any changes by email. 

If the launch is postponed, attendees will be invited to attend a later launch date. NASA cannot accommodate attendees for delays beyond 72 hours. 

NASA Social attendees are responsible for any additional costs they incur related to any launch delay. We strongly encourage participants to make travel arrangements that are refundable and/or flexible. 

What if I cannot come to Vandenberg Space Force Base? 

If you cannot come to Vandenberg Space Force Base and attend in person, you should not register for the NASA Social. You can follow the conversation online using #NASASocial.  

You can watch the launch on NASA+ or plus.nasa.gov/. NASA will provide regular launch and mission updates on @NASA and @NASA_LSP on X. 

If you cannot make this NASA Social, don’t worry; NASA is planning many other Socials in the near future at various locations! Check back here for updates. 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The high-rise bridge that serves as the primary access point for employees and visitors to NASA’s Kennedy Space Center in Florida now is fully operational. In the late hours of March 18, 2025, the Florida Department of Transportation (FDOT) opened the westbound portion of the NASA Causeway Bridge, which spans the Indian River Lagoon and connects NASA Kennedy and Cape Canaveral Space Force Station to the mainland.
      This new bridge span (right side of photo) sits alongside its twin on the eastbound side, which has accommodated traffic in both directions since FDOT opened it on June 9, 2023. The new structure replaces the old two-lane drawbridge which operated at that location for nearly 60 years.
      “The old drawbridge served us well, witnessing decades of spaceflights since the Apollo era and supporting Kennedy’s transition to a multi-user spaceport,” said Kennedy’s Acting Director Kelvin Manning. “The new bridge will see NASA send American astronauts back to the Moon and on to Mars, and it will support the continued rapid growth of America’s commercial space industry here at Earth’s premier spaceport.”
      At 4,025 feet long, the new NASA Causeway Bridge is about 35% longer than its predecessor, featuring a 65-foot waterway clearance and a channel wide enough to handle larger vessels carrying cargo necessary for Kennedy to continue launching humanity’s future.
      The bridge sits on over 1,000 concrete pilings which total more than 22 miles in length. Nearly 270 concrete I-beams, each weighing hundreds of thousands of pounds, support the bridge, along with over 40,000 cubic yards of concrete and over 8.7 million pounds of steel. All 110 spans of the old drawbridge were demolished during the construction, with much of the material recycled for future projects.
      A $90 million federal infrastructure grant secured in July 2019 by Space Florida via the U.S. Department of Transportation funded nearly 50% of the drawbridge replacement as well the widening of nearby Space Commerce Way. NASA and the state of Florida provided the remaining funding for the upgrades.
      Photo credit: NASA/Glenn Benson
      View the full article
    • By NASA
      NASA astronauts Nick Hague, Suni Williams, Butch Wilmore, and Roscosmos cosmonaut Aleksandr Gorbunov land in a SpaceX Dragon spacecraft in the water off the coast of Tallahassee, Florida on March 18, 2025. Hague, Gorbunov, Williams, and Wilmore returned from a long-duration science expedition aboard the International Space Station. Credit: NASA/Keegan Barber NASA’s SpaceX Crew-9 completed the agency’s ninth commercial crew rotation mission to the International Space Station on Tuesday, splashing down safely in a SpaceX Dragon spacecraft off the coast of Tallahassee, Florida, in the Gulf of America.
      NASA astronauts Nick Hague, Suni Williams, and Butch Wilmore, and Roscosmos cosmonaut Aleksandr Gorbunov, returned to Earth at 5:57 p.m. EDT. Teams aboard SpaceX recovery vessels retrieved the spacecraft and its crew. After returning to shore, the crew will fly to NASA’s Johnson Space Center in Houston and reunite with their families.
      “We are thrilled to have Suni, Butch, Nick, and Aleksandr home after their months-long mission conducting vital science, technology demonstrations, and maintenance aboard the International Space Station,” said NASA acting Administrator Janet Petro. “Per President Trump’s direction, NASA and SpaceX worked diligently to pull the schedule a month earlier. This international crew and our teams on the ground embraced the Trump Administration’s challenge of an updated, and somewhat unique, mission plan, to bring our crew home. Through preparation, ingenuity, and dedication, we achieve great things together for the benefit of humanity, pushing the boundaries of what is possible from low Earth orbit to the Moon and Mars.”
      Hague and Gorbunov lifted off at 1:17 p.m. Sept. 28, 2024, on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. The next day, they docked to the forward-facing port of the station’s Harmony module. Williams and Wilmore launched aboard Boeing’s Starliner spacecraft and United Launch Alliance Atlas V rocket on June 5, 2024, from Space Launch Complex 41 as part of the agency’s Boeing Crew Flight Test. The duo arrived at the space station on June 6. In August, NASA announced the uncrewed return of Starliner to Earth and integrated Wilmore and Williams as part of the space station’s Expedition 71/72 for a return on Crew-9. The crew of four undocked at 1:05 a.m. Tuesday to begin the trip home.
      Williams and Wilmore traveled 121,347,491 miles during their mission, spent 286 days in space, and completed 4,576 orbits around Earth. Hague and Gorbunov traveled 72,553,920 miles during their mission, spent 171 days in space, and completed 2,736 orbits around Earth. The Crew-9 mission was the first spaceflight for Gorbunov. Hague has logged 374 days in space over his two missions, Williams has logged 608 days in space over her three flights, and Wilmore has logged 464 days in space over his three flights.
      Throughout its mission, Crew-9 contributed to a host of science and maintenance activities and technology demonstrations. Williams conducted two spacewalks, joined by Wilmore for one and Hague for another, removing a radio frequency group antenna assembly from the station’s truss, collecting samples from the station’s external surface for analysis, installing patches to cover damaged areas of light filters on an X-ray telescope, and more. Williams now holds the record for total spacewalking time by a female astronaut, with 62 hours and 6 minutes outside of station, and is fourth on the all-time spacewalk duration list.
      The American crew members conducted more than 150 unique scientific experiments and technology demonstrations between them, with over 900 hours of research. This research included investigations on plant growth and quality, as well as the potential of stem cell technology to address blood diseases, autoimmune disorders, and cancers. They also tested lighting systems to help astronauts maintain circadian rhythms, loaded the first wooden satellite for deployment, and took samples from the space station’s exterior to study whether microorganisms can survive in space.
      The Crew-9 mission was the fourth flight of the Dragon spacecraft named Freedom. It also previously supported NASA’s SpaceX Crew-4, Axiom Mission 2, and Axiom Mission 3. The spacecraft will return to Florida for inspection and processing at SpaceX’s refurbishing facility at Cape Canaveral Space Force Station, where teams will inspect the Dragon, analyze data on its performance, and begin processing for its next flight.
      The Crew-9 flight is part of NASA’s Commercial Crew Program, and its return to Earth follows on the heels of NASA’s SpaceX Crew-10 launch, which docked to the station on March 16, beginning another long-duration science expedition.
      The goal of NASA’s Commercial Crew Program is safe, reliable, and cost-effective transportation to and from the space station and low Earth orbit. The program provides additional research time and has increased opportunities for discovery aboard humanity’s microgravity testbed for exploration, including helping NASA prepare for human exploration of the Moon and Mars.
      Learn more about NASA’s Commercial Crew Program at:
      https://www.nasa.gov/commercialcrew
      -end-
      Amber Jacobson / Joshua Finch
      Headquarters, Washington
      202-358-1100
      amber.c.jacobson@nasa.gov / joshua.a.finch@nasa.gov
      Kenna Pell / Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      kenna.m.pell@nasa.gov / sandra.p.jones@nasa.gov
      Steve Siceloff / Stephanie Plucinsky
      Kennedy Space Center, Florida
      321-867-2468
      steven.p.siceloff@nasa.gov / stephanie.n.plucinsky@nasa.gov
      Share
      Details
      Last Updated Mar 18, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Humans in Space Expedition 72 International Space Station (ISS) ISS Research Space Operations Mission Directorate View the full article
    • By NASA
      After delivering ten NASA science and technology payloads to the near side of the Moon through NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, Firefly Aerospace’s Blue Ghost Mission 1 lander captured this image of a sunset from the lunar surface. Credit: Firefly Aerospace After landing on the Moon with NASA science and technology demonstrations March 2, Firefly Aerospace’s Blue Ghost Mission 1 concluded its mission March 16. Analysis of data returned to Earth from the NASA instruments continues, benefitting future lunar missions.
      As part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, Firefly’s Blue Ghost lunar lander delivered 10 NASA science and technology instruments to the Mare Crisium basin on the near side of the Moon. During the mission, Blue Ghost captured several images and videos, including imaging a total solar eclipse and a sunset from the surface of the Moon. The mission lasted for about 14 days, or the equivalent of one lunar day, and multiple hours into the lunar night before coming to an end.
      “Firefly’s Blue Ghost Mission 1 marks the longest surface duration commercial mission on the Moon to date, collecting extraordinary science data that will benefit humanity for decades to come,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “With NASA’s CLPS initiative, American companies are now at the forefront of an emerging lunar economy that lights the way for the agency’s exploration goals on the Moon and beyond.”
      All 10 NASA payloads successfully activated, collected data, and performed operations on the Moon. Throughout the mission, Blue Ghost transmitted 119 gigabytes of data back to Earth, including 51 gigabytes of science and technology data. In addition, all payloads were afforded additional opportunities to conduct science and gather more data for analysis, including during the eclipse and lunar sunset.
      “Operating on the Moon is complex; carrying 10 payloads, more than has ever flown on a CLPS delivery before, makes the mission that much more impressive,” said Joel Kearns, deputy associate administrator for exploration, Science Mission Directorate, NASA Headquarters. “Teams are eagerly analyzing their data, and we are extremely excited for the expected scientific findings that will be gained from this mission.”
      Among other achievements, many of the NASA instruments performed first-of-their-kind science and technology demonstrations, including:
      The Lunar Instrumentation for Subsurface Thermal Exploration with Rapidity  is now the deepest robotic planetary subsurface thermal probe, drilling  up to 3 feet and providing a first-of-its kind demonstration of robotic thermal measurements at varying depths. The Lunar GNSS Receiver Experiment acquired and tracked Global Navigation Satellite Systems (GNSS) signals, from satellite networks such as GPS and Galileo, for the first time enroute to and on the Moon’s surface. The LuGRE payload’s record-breaking success indicates that GNSS signals could complement other navigation methods and be used to support future Artemis missions. It also acts as a stepping stone to future navigation systems on Mars.  The Radiation Tolerant Computer successfully operated in transit through Earth’s Van Allen belts, as well as on the lunar surface into the lunar night, verifying solutions to mitigate radiation effects on computers that could make future missions safer for equipment and more cost effective. The Electrodynamic Dust Shield successfully lifted and removed lunar soil, or regolith, from surfaces using electrodynamic forces, demonstrating a promising solution for dust mitigation on future lunar and interplanetary surface operations. The Lunar Magnetotelluric Sounder successfully deployed five sensors to study the Moon’s interior by measuring electric and magnetic fields. The instrument allows scientists to characterize the interior of the Moon to depths up to 700 miles, or more than half the distance to the Moon’s center. The Lunar Environment heliospheric X-ray Imager captured a series of X-ray images to study the interaction of the solar wind and Earth’s magnetic field, providing insights into how space weather and other cosmic forces surrounding Earth affect the planet.  The Next Generation Lunar Retroreflector successfully reflected and returned laser light from two Lunar Laser Ranging Observatories, returning measurements allowing scientists to precisely measure the Moon’s shape and distance from Earth, expanding our understanding of the Moon’s inner structure.  The Stereo Cameras for Lunar Plume-Surface Studies instrument captured about 9,000 images during the spacecraft’s lunar descent and touchdown on the Moon, providing insights into the effects engine plumes have on the surface. The payload also operated during the lunar sunset and into the lunar night. The Lunar PlanetVac was deployed on the lander’s surface access arm and successfully collected, transferred, and sorted lunar soil using pressurized nitrogen gas, demonstrating a low-cost, low-mass solution for future robotic sample collection. The Regolith Adherence Characterization instrument examined how lunar regolith sticks to a range of materials exposed to the Moon’s environment, which can help test, improve, and protect spacecraft, spacesuits, and habitats from abrasive lunar dust or regolith. The data captured will benefit humanity in many ways, providing insights into how space weather and other cosmic forces may impact Earth. Establishing an improved awareness of the lunar environment ahead of future crewed missions will help plan for long-duration surface operations under Artemis.
      To date, five vendors have been awarded 11 lunar deliveries under CLPS and are sending more than 50 instruments to various locations on the Moon, including the lunar South Pole and far side.
      Learn more about NASA’s CLPS initiative at:
      https://www.nasa.gov/clps
      -end-
      Alise Fisher 
      Headquarters, Washington
      202-617-4977
      alise.m.fisher@nasa.gov
      Natalia Riusech / Nilufar Ramji
      Johnson Space Center, Houston
      281-483-5111
      nataila.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
      Antonia Jaramillo
      Kennedy Space Center, Florida
      321-501-8425
      antonia.jaramillobotero@nasa.gov
      Share
      Details
      Last Updated Mar 18, 2025 LocationNASA Headquarters Related Terms
      Commercial Lunar Payload Services (CLPS) Artemis Blue Ghost (lander) Johnson Space Center Kennedy Space Center NASA Headquarters View the full article
    • By NASA
      As part of NASA’s Advanced Capabilities for Emergency Response Operations flight tests in November 2024, Overwatch Aero flies a vertical takeoff and landing aircraft in Watsonville, California.Credit: NASA NASA will conduct a live flight test of aircraft performing simulated wildland fire response operations using a newly developed airspace management system at 9 a.m. PDT on Tuesday, March 25, in Salinas, California.
      NASA’s new portable airspace management system, part of the agency’s Advanced Capabilities for Emergency Response Operations (ACERO) project, aims to significantly expand the window of time crews have to respond to wildland fires. The system provides the air traffic awareness needed to safely send aircraft – including drones and remotely piloted helicopters – into wildland fire operations, even during low-visibility conditions. Current aerial firefighting operations are limited to times when pilots have clear visibility, which lowers the risk of flying into the surrounding terrain or colliding with other aircraft. This restriction grounds most aircraft at night and during periods of heavy smoke.
      During this inaugural flight test, researchers will use the airspace management system to coordinate the flight operations of two small drones, an electric vertical takeoff and landing aircraft, and a remotely piloted aircraft that will have a backup pilot aboard. The drones and aircraft will execute examples of critical tasks for wildland fire management, including weather data sharing, simulated aerial ignition flights, and communications relay.
      Media interested in viewing the ACERO flight testing must RSVP by 4 p.m. Friday, March 21, to the NASA Ames Office of Communications by email at: arc-dl-newsroom@mail.nasa.gov or by phone at 650-604-4789. NASA will release additional details, including address and arrival logistics, to media credentialed for the event. A copy of NASA’s media accreditation policy is online.
      NASA’s ACERO researchers will use data from the flight test to refine the airspace management system. The project aims to eventually provide this technology to wildland fire crews for use in the field, helping to save lives and property. This project is managed at NASA’s Ames Research Center in California’s Silicon Valley.
      For more information on ACERO, visit:
      https://go.nasa.gov/4bYEzsD
      -end-
      Rob Margetta
      Headquarters, Washington
      202-358-1600
      robert.j.margetta@nasa.gov
      Hillary Smith
      Ames Research Center, Silicon Valley
      650-604-4789
      hillary.smith@nasa.gov
      Share
      Details
      Last Updated Mar 18, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Ames Research Center Advanced Capabilities for Emergency Response Operations Aeronautics Aeronautics Research Mission Directorate Flight Innovation View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Media are invited to meet leaders in the space community during the 62nd annual Goddard Space Science Symposium, taking place from Wednesday, March 19, to Friday, March 21, at Martin’s Crosswinds in Greenbelt, Maryland. The symposium will also be streamed online.
      Hosted by the American Astronautical Society (AAS) in conjunction with NASA’s Goddard Space Flight Center in Greenbelt, the symposium examines the current state and future of space science and space exploration at large by convening leading minds across NASA, other government agencies, policy, academia, and industry – collectively navigating a path forward by identifying the opportunities and challenges ahead.
      This year’s theme, “Pathways and Partnerships for U.S. Leadership in Earth and Space Science,” highlights the evolving collaborative landscape between the public and private sectors, as well as how it is helping the United States remain and grow as a leading space power. 
      “Earth and space science are complex by nature, with a growing list of public and private enterprises carving out their space,” said Christa Peters-Lidard, co-chair of the symposium planning committee and Goddard’s director of sciences and exploration. “It’s an exciting time as we work to determine the future trajectory of space exploration in this new era, and the Goddard Space Science Symposium is an instrumental tool for gathering the insights of leading experts across a broad spectrum.”
      AAS President Ron Birk and Goddard Deputy Center Director Cynthia Simmons will deliver the symposium’s opening remarks on March 19, followed by panels on enabling science and exploration from the Moon to Mars and navigating space science and exploration policy. Greg Autry, associate provost for space commercialization and strategy at the University of Central Florida, will deliver the keynote address. The first day will conclude with an industry night reception.
      The second day of the symposium on Thursday, March 20, will feature panels on enhancing U.S. economic leadership through science, the Habitable Worlds Observatory, and the confluence of public science and the private sector. Gillian Bussey, deputy chief science officer for the U.S. Space Force, will serve as the luncheon speaker.
      Panels on the third and final day, March 21, will discuss integrating multi-sector data to advance Earth and space science, the Heliophysics Decadal Survey, and the space weather enterprise. Mark Clampin, acting deputy associate administrator for the NASA Science Mission Directorate, will provide the luncheon address.
      Media interested in arranging interviews with NASA speakers should contact Jacob Richmond, Goddard acting news chief.
      For more information on the Goddard Space Science Symposium and the updated program, or to register as a media representative, visit https://astronautical.org/events/goddard.
      For more information on NASA’s Goddard Space Flight Center, visit https://www.nasa.gov/goddard.
      Media Contact:
      Jacob Richmond
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Mar 18, 2025 EditorJamie AdkinsLocationNASA Goddard Space Flight Center Related Terms
      Goddard Space Flight Center View the full article
  • Check out these Videos

×
×
  • Create New...