Jump to content

Hubble Space Telescope on Track for Measuring the Expansion Rate of the Universe


Recommended Posts

low_STSCI-H-p9621a-k-1340x520.png

Using the Hubble telescope, two international teams of astronomers are reporting major progress in converging on an accurate measurement of the universe's rate of expansion - a value that has been debated for over half a century.

These new results yield ranges for the age of the universe from 9-12 billion years and 11-14 billion years, respectively. The black and white photograph from a ground-based telescope shows the entire galaxy. The color image from the Hubble telescope shows a region in NGC 1365, a barred spiral galaxy located in a cluster of galaxies called Fornax. A barred spiral galaxy is characterized by a "bar" of stars, dust, and gas across its center. Astronomers used Cepheid variable stars in Fornax to estimate the cluster's distance from Earth, about 60 million light-years. Cepheids are bright, young stars that are used as milepost markers to calculate distances to nearby galaxies. Galaxy distances are important in calculating the universe's expansion rate and age.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Three-Year Study of Young Stars with NASA’s Hubble Enters New Chapter
      In the largest and one of the most ambitious Hubble Space Telescope programs ever executed, a team of scientists and engineers collected information on almost 500 stars over a three-year period. This effort offers new insights into the stars’ formation, evolution, and impact on their surroundings. 
      This comprehensive survey, called ULLYSES (Ultraviolet Legacy Library of Young Stars as Essential Standards), was completed in December 2023, and provides a rich spectroscopic dataset obtained in ultraviolet light that astronomers will be mining for decades to come. Because ultraviolet light can only be observed from space, Hubble is the only active telescope that can accomplish this research. 
      The ULLYSES program studied two types of young stars: super-hot, massive, blue stars and cooler, redder, less massive stars than our Sun. The top panel is a Hubble Space Telescope image of a star-forming region containing massive, young, blue stars in 30 Doradus, the Tarantula Nebula. Located within the Large Magellanic Cloud, this is one of the regions observed by ULLYSES. The bottom panel shows an artist’s concept of a cooler, redder, young star that less massive than our Sun. This type of star is still gathering material from its surrounding, planet-forming disk. NASA, ESA, STScI, Francesco Paresce (INAF-IASF Bologna), Robert O’Connell (UVA), SOC-WFC3, ESO
      Download this image

      “I believe the ULLYSES project will be transformative, impacting overall astrophysics – from exoplanets, to the effects of massive stars on galaxy evolution, to understanding the earliest stages of the evolving universe,” said Julia Roman-Duval, Implementation Team Lead for ULLYSES at the Space Telescope Science Institute (STScI) in Baltimore, Maryland. “Aside from the specific goals of the program, the stellar data can also be used in fields of astrophysics in ways we can’t yet imagine.”
      The ULLYSES team studied 220 stars, then combined those observations with information from the Hubble archive on 275 additional stars. The program also included data from some of the world’s largest, most powerful ground-based telescopes and X-ray space telescopes. The ULLYSES dataset is made up of stellar spectra, which carry information about each star’s temperature, chemical composition, and rotation. 
      One type of stars studied under ULLYSES is super-hot, massive, blue stars. They are a million times brighter than the Sun and glow fiercely in ultraviolet light that can easily be detected by Hubble. Their spectra include key diagnostics of the speed of their powerful winds. The winds drive galaxy evolution and seed galaxies with the elements needed for life. Those elements are cooked up inside the stars’ nuclear fusion ovens and then injected into space as a star dies. ULLYSES targeted blue stars in nearby galaxies that are deficient in elements heavier than helium and hydrogen. This type of galaxy was common in the very early universe. “ULLYSES observations are a stepping stone to understanding those first stars and their winds in the universe, and how they impact the evolution of their young host galaxy,” said Roman-Duval.  
      The other star category in the ULLYSES program is young stars less massive than our Sun. Though cooler and redder than our Sun, in their formative years they unleash a torrent of high-energy radiation, including blasts of ultraviolet light and X-rays. Because they are still growing, they are gathering material from their surrounding planet-forming disks of dust and gas. The Hubble spectra include key diagnostics of the process by which they acquire their mass, including how much energy this process releases into the surrounding planet-forming disk and nearby environment. The blistering ultraviolet light from young stars affects the evolution of these disks as they form planets, as well as the chances of habitability for newborn planets. The target stars are located in nearby star-forming regions in our Milky Way galaxy.
      The ULLYSES concept was designed by a committee of experts with the goal of using Hubble to provide a legacy set of stellar observations. “ULLYSES was originally conceived as an observing program utilizing Hubble’s sensitive spectrographs. However, the program was tremendously enhanced by community-led coordinated and ancillary observations with other ground- and space-based observatories,” said Roman-Duval. “Such broad coverage allows astronomers to investigate the lives of stars in unprecedented detail and paint a more comprehensive picture of the properties of these stars and how they impact their environment.”
      To that end, STScI hosted a ULLYSES workshop March 11–14 to celebrate the beginning of a new era of research on young stars. The goal was to allow members of the astronomical community to collaborate on the data, so that they could gain momentum in the ongoing analyses, or kickstart new ideas for analysis. The workshop was one important step in exploiting this legacy spectral library to its fullest potential, fulfilling the promise of ULLYSES.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Media Contacts:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Ann Jenkins / Ray Villard
      Space Telescope Science Institute, Baltimore, MD
      Science Contact:
      Julia Roman-Duval
      Space Telescope Science Institute, Baltimore, MD
      Share








      Details
      Last Updated Mar 28, 2024 Editor Andrea Gianopoulos Related Terms
      Astrophysics Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Missions Stars The Universe Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Stars Stories



      Galaxies Stories



      Universe


      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Europa Clipper is seen in the 25-Foot Space Simulator at JPL in February, before the start of thermal vacuum testing. A battery of tests ensures that the NASA spacecraft can withstand the extreme hot, cold, and airless environment of space. NASA/JPL-Caltech A gantlet of tests prepared the spacecraft for its challenging trip to the Jupiter system, where it will explore the icy moon Europa and its subsurface ocean.
      In less than six months, NASA is set to launch Europa Clipper on a 1.6-billion-mile (2.6-billion-kilometer) voyage to Jupiter’s ocean moon Europa. From the wild vibrations of the rocket ride to the intense heat and cold of space to the punishing radiation of Jupiter, it will be a journey of extremes. The spacecraft was recently put through a series of hard-core tests at the agency’s Jet Propulsion Laboratory in Southern California to ensure it’s up to the challenge.
      Called environmental testing, the battery of trials simulates the environment that the spacecraft will face, subjecting it to shaking, chilling, airlessness, electromagnetic fields, and more.
      NASA’s Europa Clipper is seen being lifted into the Space Simulator at JPL in February. Thermal vacuum testing, which lasted 16 days, ensures that the spacecraft will withstand the harsh conditions of space. NASA/JPL-Caltech NASA’s Europa Clipper is visible in the clean room of High Bay 1 within JPL’s Spacecraft Assembly Facility in January. The tent around the spacecraft was erected to support electromagnetic testing, which was part of a regimen of environmental tests. NASA/JPL-Caltech “These were the last big tests to find any flaws,” said JPL’s Jordan Evans, the mission’s project manager. “Our engineers executed a well-designed and challenging set of tests that put the system through its paces. What we found is that the spacecraft can handle the environments that it will see during and after launch. The system performed very well and operates as expected.”
      The Gantlet
      The most recent environmental test for Europa Clipper was also one of the most elaborate, requiring 16 days to complete. The spacecraft is the largest NASA has ever built for a planetary mission and one of the largest ever to squeeze into JPL’s historic 85-foot-tall, 25-foot-wide (26-meter-by-8-meter) thermal vacuum chamber (TVAC). Known as the 25-foot Space Simulator, the chamber creates a near-perfect vacuum inside to mimic the airless environment of space.
      At the same time, engineers subjected the hardware to the high temperatures it will experience on the side of Europa Clipper that faces the Sun while the spacecraft is close to Earth. Beams from powerful lamps at the base of the Space Simulator bounced off a massive mirror at its top to mimic the heat the spacecraft will endure.
      To simulate the journey away from the Sun, the lamps were dimmed and liquid nitrogen filled tubes in the chamber walls to chill them to temperatures replicating space. The team then gauged whether the spacecraft could warm itself, monitoring it with about 500 temperature sensors, each of which had been attached by hand.
      Watch as engineers and technicians move NASA’s Europa Clipper into the thermal vacuum chamber at JPL in February 2024.
      Credit: NASA/JPL-Caltech TVAC marked the culmination of environmental testing, which included a regimen of tests to ensure the electrical and magnetic components that make up the spacecraft don’t interfere with one another.
      The orbiter also underwent vibration, shock, and acoustics testing. During vibration testing, the spacecraft was shaken repeatedly – up and down and side to side – the same way it will be jostled aboard the SpaceX Falcon Heavy rocket during liftoff. Shock testing involved pyrotechnics to mimic the explosive jolt the spacecraft will get when it separates from the rocket to fly its mission. Finally, acoustic testing ensured that Europa Clipper can withstand the noise of launch, when the rumbling of the rocket is so loud it can damage the spacecraft if it’s not sturdy enough.
      “There still is work to be done, but we’re on track for an on-time launch,” Evans said. “And the fact that this testing was so successful is a huge positive and helps us rest more easily.”
      Looking to Launch
      Later this spring, the spacecraft will be shipped to NASA’s Kennedy Space Center in Florida. There, teams of engineers and technicians will carry out final preparations with eyes on the clock. Europa Clipper’s launch period opens Oct. 10.
      After liftoff, the spacecraft will zip toward Mars, and in late February 2025, it will be close enough to use the Red Planet’s gravitational force for added momentum. From there, the solar-powered spacecraft will swing back toward Earth to get another slingshot boost – from our own planet’s gravitational field – in December 2026.
      Then it’s on to the outer solar system, where Europa Clipper is set to arrive at Jupiter in 2030. The spacecraft will orbit the gas giant while it flies by Europa 49 times, dipping as close as 16 miles (25 kilometers) from the moon’s surface to gather data with its powerful suite of science instruments. The information gathered will tell scientists more about the moon’s watery interior.
      More About the Mission
      Europa Clipper’s main science goal is to determine whether there are places below the surface of Jupiter’s icy moon, Europa, that could support life. The mission’s three main science objectives are to determine the thickness of the moon’s icy shell and its surface interactions with the ocean below, to investigate its composition, and to characterize its geology. The mission’s detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet.
      Managed by Caltech in Pasadena, California, JPL leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, for NASA’s Science Mission Directorate in Washington. APL designed the main spacecraft body in collaboration with JPL and NASA’s Goddard Space Flight Center in Greenbelt, Maryland. The Planetary Missions Program Office at NASA’s Marshall Space Flight Center in Huntsville, Alabama, executes program management of the Europa Clipper mission.
      Find more information about Europa here:
      europa.nasa.gov
      News Media Contacts
      Gretchen McCartney
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-6215
      gretchen.p.mccartney@jpl.nasa.gov
      Karen Fox / Charles Blue
      NASA Headquarters, Washington
      301-286-6284 / 202-802-5345
      karen.c.fox@nasa.gov / charles.e.blue@nasa.gov
      2024-032
      Share
      Details
      Last Updated Mar 27, 2024 Related Terms
      Europa Clipper Europa Jet Propulsion Laboratory Jupiter The Solar System Explore More
      5 min read ESA, NASA Solar Observatory Discovers Its 5,000th Comet
      On March 25, 2024, a citizen scientist in the Czech Republic spotted a comet in…
      Article 2 hours ago 3 min read NASA’s OSIRIS-REx Mission Awarded Collier Trophy
      Article 21 hours ago 6 min read NASA to Launch Sounding Rockets into Moon’s Shadow During Solar Eclipse
      NASA will launch three sounding rockets during the total solar eclipse on April 8, 2024,…
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      When it comes to predicting what our climate will be like in the future, vegetation matters. Plants and trees exert a powerful influence over both the energy cycle and the water cycle. And, crucially, it is estimated that vegetation draws down well over three billion tonnes of carbon from the atmosphere each year – this is equivalent to a third of greenhouse-gas emissions from human activity.
      Accounting for vegetation growth is clearly important in the complex climate puzzle – and the release of a new satellite dataset is set to help climate modellers with the challenge of evaluating the impacts of climate change.
      View the full article
    • By NASA
      ESA/Hubble & NASA, M. Sun This NASA/ESA Hubble Space Telescope image shows LEDA 42160, a galaxy about 52 million light-years from Earth in the constellation Virgo. The dwarf galaxy is one of many forcing its way through the comparatively dense gas in the massive Virgo cluster of galaxies. The pressure exerted by this intergalactic gas, known as ram pressure, has dramatic effects on star formation in LEDA 42160.
      The gas and dust that permeates space exerts pressure on a galaxy as it moves. This resistance, called ram pressure, can strip a galaxy of its star-forming gas and dust, reducing or even stopping the creation of new stars. However, ram pressure can also compress gas in the galaxy, which can boost star formation.
      The Hubble data used to create this image of LEDA 42160 is part of a project that studied dwarf galaxies undergoing ram pressure stripping that are part of large galaxy clusters, like the Virgo cluster. Studies show that ram pressure stripping can initially cause new stars to form in larger galaxies. The researchers wanted to see if the same holds true for smaller galaxies, like LEDA 42160. The bright patches on LEDA 42160’s lower-right flank may be star-forming regions spurred on by ram pressure stripping. Hubble’s observations of LEDA 42160 will help astronomers determine the processes that created the features we see in this small galaxy.

      Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      View the full article
    • By NASA
      3 min read
      Hubble Sees New Star Proclaiming Presence with Cosmic Lightshow
      This new image from NASA’s Hubble Space Telescope features the FS Tau star system. NASA, ESA, and K. Stapelfeldt (NASA JPL); Image Processing: Gladys Kober (NASA/Catholic University of America) Jets emerge from the cocoon of a newly forming star to blast across space, slicing through the gas and dust of a shining nebula in this new image from NASA’s Hubble Space Telescope.
      FS Tau is a multi-star system made up of FS Tau A, the bright star-like object near the middle of the image, and FS Tau B (Haro 6-5B), the bright object to the far right obscured by a dark, vertical lane of dust. The young objects are surrounded by gently illuminated gas and dust of this stellar nursery. The system is only about 2.8 million years old, very young for a star system. Our Sun, by contrast, is about 4.6 billion years old.
      FS Tau B is a newly forming star, or protostar, surrounded by a protoplanetary disk, a pancake-shaped collection of dust and gas leftover from the formation of the star that will eventually coalesce into planets. The thick dust lane, seen nearly edge-on, separates what are thought to be the illuminated surfaces of the flared disk.
      FS Tau B is likely in the process of becoming a T Tauri star, a type of young variable star that hasn’t begun nuclear fusion yet but is beginning to evolve into a hydrogen-fueled star similar to our Sun. Protostars shine with the heat energy released as the gas clouds from which they are forming collapse, and from the accretion of material from nearby gas and dust. Variable stars are a class of star whose brightness changes noticeably over time.
      FS Tau A is itself a T Tauri binary system, consisting of two stars orbiting each other.
      Protostars are known to eject fast-moving, column-like streams of energized material called jets, and FS Tau B provides a striking example of this phenomenon. The protostar is the source of an unusual asymmetric, double-sided jet, visible here in blue. Its asymmetrical structure may result from the difference in the rates at which mass is being expelled from the object.
      FS Tau B is also classified as a Herbig-Haro object. Herbig–Haro objects form when jets of ionized gas ejected by a young star collide with nearby clouds of gas and dust at high speeds, creating bright patches of nebulosity.
      FS Tau is part of the Taurus-Auriga region, a collection of dark molecular clouds that are home to numerous newly forming and young stars, roughly 450 light-years away in the constellations of Taurus and Auriga. Hubble has previously observed this region, whose star-forming activity makes it a compelling target for astronomers. Hubble took these observations as part of an investigation of edge-on dust disks around young stellar objects.

      Download this image

      Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Mar 25, 2024 Editor Andrea Gianopoulos Location Goddard Space Flight Center Related Terms
      Goddard Space Flight Center Hubble Space Telescope Missions Nebulae Protostars Stars The Universe Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Galaxies Stories



      Stars Stories



      NASA Astrophysics


      View the full article
  • Check out these Videos

×
×
  • Create New...