Jump to content

World's Most Powerful Telescopes Team Up With a Lens in Nature to Discover Farthest Galaxy in the Universe


Recommended Posts

Posted
low_STSCI-H-p-9725a-k1340x520.png

An international team of astronomers has discovered the most distant galaxy in the universe to date. They found it by combining the unique sharpness of the Hubble telescope with the light-collecting power of the W. M. Keck Telescopes – with an added boost from a gravitational lens in space.

The results show the young galaxy is as far as 13 billion light-years from Earth, based on an estimated age for the universe of approximately 14 billion years. The Hubble picture at left shows the young galaxy as a red crescent to the lower right of center. The galaxy's image is brightened, magnified, and smeared into this arc-shape by the gravitational influence of an intervening galaxy cluster, which acts like a gigantic lens. The image at upper right is a close-up of the "gravitationally lensed" galaxy. In the picture at lower right, astronomers have "unsmeared" the galaxy, revealing the galaxy's normal appearance.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      8 Min Read NASA Telescopes Tune Into a Black Hole Prelude, Fugue
      The first sonification features WR124, an extremely bright, massive star. Here, the star is shown in a short-lived phase preceding the possible creation of a black hole. NASA released three new pieces of cosmic sound Thursday that are associated with the densest and darkest members of our universe: black holes. These scientific productions are sonifications — or translations into sound — of data collected by NASA telescopes in space including the Chandra X-ray Observatory, James Webb Space Telescope, and Imaging X-ray Polarimetry Explorer (IXPE).
      This trio of sonifications represents different aspects of black holes and black hole evolution. WR124 is an extremely bright, short-lived massive star known as a Wolf-Rayet that may collapse into a black hole in the future. SS 433 is a binary, or double system, containing a star like our Sun in orbit with either a neutron star or a black hole. The galaxy Centaurus A has an enormous black hole in its center that is sending a booming jet across the entire length of the galaxy. Data from Chandra and other telescopes were translated through a process called “sonification” into sounds and notes. This new trio of sonifications represents different aspects of black holes. Black holes are neither static nor monolithic. They evolve over time, and are found in a range of sizes and environments.
      WR 124 
      Credit: X-ray: NASA/CXC/SAO; Infrared: (Herschel) ESA/NASA/Caltech, (Spitzer) NASA/JPL/Caltech, (WISE) NASA/JPL/Caltech; Infrared: NASA/ESA/CSA/STScI/Webb ERO Production Team; Image processing: NASA/CXC/SAO/J. Major; Sonification: NASA/CXC/SAO/K.Arcand, SYSTEM Sounds (M. Russo, A. Santaguida) The first movement is a prelude to the potential birth of a black hole. WR124 is an extremely bright, short-lived massive star known as a Wolf-Rayet at a distance of about 28,000 light-years from Earth. These stars fling their outer layers out into space, creating spectacular arrangements seen in an image in infrared light from the Webb telescope. In the sonification of WR124, this nebula is heard as flutes and the background stars as bells. At the center of WR124, where the scan begins before moving outward, is a hot core of the star that may explode as a supernova and potentially collapse and leave behind a black hole in its wake. As the scan moves from the center outward, X-ray sources detected by Chandra are translated into harp sounds. Data from NASA’s James Webb Space Telescope is heard as metallic bell-like sounds, while the light of the central star is mapped to produce the descending scream-like sound at the beginning. The piece is rounded out by strings playing additional data from the infrared telescopic trio of ESA’s (European Space Agency’s) Herschel Space Telescope, NASA’s retired Spitzer Space Telescope, and NASA’s retired Wide Image Survey Explorer (WISE) as chords.
      SS 433
      Credit: X-ray: (IXPE): NASA/MSFC/IXPE; (Chandra): NASA/CXC/SAO; (XMM): ESA/XMM-Newton; IR: NASA/JPL/Caltech/WISE; Radio: NRAO/AUI/NSF/VLA/B. Saxton. (IR/Radio image created with data from M. Goss, et al.); Image Processing/compositing: NASA/CXC/SAO/N. Wolk & K. Arcand; Sonification: NASA/CXC/SAO/K.Arcand, SYSTEM Sounds (M. Russo, A. Santaguida) In the second movement of this black hole composition, listeners can explore a duet. SS 433 is a binary, or double, system about 18,000 light-years away that sings out in X-rays. The two members of SS 433 include a star like our Sun in orbit around a much heavier partner, either a neutron star or a black hole. This orbital dance causes undulations in X-rays that Chandra, IXPE, and ESA’s XMM-Newton telescopes are tuned into. These X-ray notes have been combined with radio and infrared data to provide a backdrop for this celestial waltz. The nebula in radio waves resembles a drifting manatee, and the scan sweeps across from right to left. Light towards the top of the image is mapped to higher-pitch sound, with radio, infrared, and X-ray light mapped to low, medium, and high pitch ranges. Bright background stars are played as water-drop sounds, and the location of the binary system is heard as a plucked sound, pulsing to match the fluctuations due to the orbital dance.
      Centarus A
      Credit: X-ray: (Chandra) NASA/CXC/SAO, (IXPE) NASA/MSFC; Optical: ESO; Image Processing: NASA/CXC/SAO/K. Arcand, J. Major, and J. Schmidt; Sonification: NASA/CXC/SAO/K.Arcand, SYSTEM Sounds (M. Russo, A. Santaguida) The third and final movement of the black hole-themed sonifications crescendos with a distant galaxy known as Centaurus A, about 12 million light-years away from Earth. At the center of Centaurus A is an enormous black hole that is sending a booming jet across the entire length of the galaxy. Sweeping around clockwise from the top of the image, the scan encounters Chandra’s X-rays and plays them as single-note wind chimes. X-ray light from IXPE is heard as a continuous range of frequencies, producing a wind-like sound. Visible light data from the European Southern Observatory’s MPG telescope shows the galaxy’s stars that are mapped to string instruments including foreground and background objects as plucked strings.
      For more NASA sonifications and information about the project, visit https://chandra.si.edu/sound/
      These sonifications were led by the Chandra X-ray Center (CXC), with support from NASA’s Marshall Space Flight Center and NASA’s Universe of Learning program, which is part of the NASA Science Activation program. The collaboration was driven by visualization scientist Kimberly Arcand (CXC), astrophysicist Matt Russo, and musician Andrew Santaguida (both of the SYSTEM Sounds project), along with consultant Christine Malec.
      NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science from Cambridge Massachusetts and flight operations from Burlington, Massachusetts. NASA’s Universe of Learning materials are based upon work supported by NASA under cooperative agreement award number NNX16AC65A to the Space Telescope Science Institute, working in partnership with Caltech/IPAC, Center for Astrophysics | Harvard & Smithsonian, and NASA’s Jet Propulsion Laboratory.
      The agency’s IXPE is a collaboration between NASA and the Italian Space Agency with partners and science collaborators in 12 countries. The IXPE mission is led by Marshall. BAE Systems, Inc., headquartered in Falls Church, Virginia, manages spacecraft operations together with the University of Colorado’s Laboratory for Atmospheric and Space Physics in Boulder.
      To learn more about NASA’s space telescopes, visit:
      https://science.nasa.gov/universe
      Read more from NASA’s Chandra X-ray Observatory Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description
      This release features three sonifications related to black holes, presented as soundtracks to short videos. Each sonification video features a composite image representing a different aspect of the life of a black hole. These images are visualizations of data collected by NASA telescopes. During each video, a line sweeps through the image. When the line encounters a visual element, it is translated into sound according to parameters established by visualization scientist Kimberly Arcand, astrophysicist Matt Russo, musician Andrew Santaguida, and consultant Christine Malec.
      The first sonification features WR124, an extremely bright, massive star. Here, the star is shown in a short-lived phase preceding the possible creation of a black hole. At the center of the composite image is the large gleaming star in white and pale blue. The star sits at the heart of a mottled pink and gold cloud, its long diffraction spikes extending to the outer edges. Also residing in the cloud are other large gleaming stars, glowing hot-pink dots, and tiny specks of blue and white light. In this sonification, the sound activation line is an ever-expanding circle which starts in the center of the massive star and continues to grow until it exits the frame.
      The second sonification features SS 433, a binary star system at the center of a supernova remnant known as the Manatee Nebula. Visually, the translucent, blobby teal nebula does, indeed, resemble a bulbous walrus or manatee, floating in a red haze packed with distant specs of light. Inside the nebula is a violet streak, a blue streak, and a large bright dot. The dot, represented by a plucking sound in the sonification, is the binary system at the heart of the nebula. In this sonification, the vertical activation line begins at our right edge of the frame, and sweeps across the image before exiting at our left.
      The third and final sonification features Centaurus A, a distant galaxy with an enormous black hole emitting a long jet of high-energy particles. The black hole sits at the center of the composite image, represented by a brilliant white light. A dark, grainy, oblong cloud cuts diagonally across the black hole from our lower left toward our upper right. A large, faint, translucent blue cloud stretches from our upper left to our lower right. And the long, thin jet, also in translucent blue, extends from the black hole at the center toward the upper lefthand corner. In this sonification, the activation line rotates around the image like the hand of a clock. It begins at the twelve o’clock position, and sweeps clockwise around the image.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      mwatzke@cfa.harvard.edu
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      lane.e.figueroa@nasa.gov
      Share
      Details
      Last Updated May 08, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
      Chandra X-Ray Observatory Black Holes Galaxies, Stars, & Black Holes IXPE (Imaging X-ray Polarimetry Explorer) Marshall Astrophysics Marshall Science Research & Projects Marshall Space Flight Center Explore More
      7 min read NASA’s Hubble Pinpoints Roaming Massive Black Hole
      Like a scene out of a sci-fi movie, astronomers using NASA telescopes have found “Space…
      Article 2 hours ago 5 min read NASA’s IXPE Reveals X-ray-Generating Particles in Black Hole Jets
      Article 2 days ago 5 min read NASA’s NICER Maps Debris From Recurring Cosmic Crashes
      Lee esta nota de prensa en español aquí. For the first time, astronomers have probed…
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Chandra X-ray Observatory
      Launched on July 23, 1999, it is the largest and most sophisticated X-ray observatory to date. NASA’s Chandra X-ray Observatory…
      Black Holes
      Black Holes Black holes are among the most mysterious cosmic objects, much studied but not fully understood. These objects aren’t…
      Universe
      IXPE
      View the full article
    • By NASA
      Did you know some of the brightest sources of light in the sky come from the regions around black holes in the centers of galaxies? It sounds a little contradictory, but it’s true! They may not look bright to our eyes, but satellites have spotted oodles of them across the universe. 
      One of those satellites is NASA’s Fermi Gamma-ray Space Telescope. Fermi has found thousands of these kinds of galaxies since it launched in 2008, and there are many more out there!
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      Watch a cosmic gamma-ray fireworks show in this animation using just a year of data from the Large Area Telescope (LAT) aboard NASA’s Fermi Gamma-ray Space Telescope. Each object’s magenta circle grows as it brightens and shrinks as it dims. The yellow circle represents the Sun following its apparent annual path across the sky. The animation shows a subset of the LAT gamma-ray records available for more than 1,500 objects in a continually updated repository. Over 90% of these sources are a type of galaxy called a blazar, powered by the activity of a supermassive black hole. NASA’s Marshall Space Flight Center/Daniel Kocevski Black holes are regions of space that have so much gravity that nothing — not light, not particles, nada — can escape. Most galaxies have supermassive black holes at their centers, and these black holes are hundreds of thousands to billions of times the mass of our Sun. In active galactic nuclei (also called “AGN” for short, or just “active galaxies”) the central region is stuffed with gas and dust that’s constantly falling toward the black hole. As the gas and dust fall, they start to spin and form a disk. Because of the friction and other forces at work, the spinning disk starts to heat up.
      This composite view of the active galaxy Markarian 573 combines X-ray data (blue) from NASA’s Chandra X-ray Observatory and radio observations (purple) from the Karl G. Jansky Very Large Array in New Mexico with a visible light image (gold) from the Hubble Space Telescope. Markarian 573 is an active galaxy that has two cones of emission streaming away from the supermassive black hole at its center. X-ray: NASA/CXC/SAO/A.Paggi et al; Optical: NASA/STScI; Radio: NSF/NRAO/VLA The disk’s heat gets emitted as light, but not just wavelengths of it that we can see with our eyes. We detect light from AGN across the entire electromagnetic spectrum, from the more familiar radio and optical waves through to the more exotic X-rays and gamma rays, which we need special telescopes to spot.
       
      In the heart of an active galaxy, matter falling toward a supermassive black hole creates jets of particles traveling near the speed of light as shown in this artist’s concept. NASA/Goddard Space Flight Center Conceptual Image Lab About one in 10 AGN beam out jets of energetic particles, which are traveling almost as fast as light. Scientists are studying these jets to try to understand how black holes — which pull everything in with their huge amounts of gravity — somehow provide the energy needed to propel the particles in these jets.
      This artist’s concept shows two views of the active galaxy TXS 0128+554, located around 500 million light-years away. Left: The galaxy’s central jets appear as they would if we viewed them both at the same angle. The black hole, embedded in a disk of dust and gas, launches a pair of particle jets traveling at nearly the speed of light. Scientists think gamma rays (magenta) detected by NASA’s Fermi Gamma-ray Space Telescope originate from the base of these jets. As the jets collide with material surrounding the galaxy, they form identical lobes seen at radio wavelengths (orange). The jets experienced two distinct bouts of activity, which created the gap between the lobes and the black hole. Right: The galaxy appears in its actual orientation, with its jets tipped out of our line of sight by about 50 degrees. NASA’s Goddard Space Flight Center Many of the ways we tell one type of AGN from another depend on how they’re oriented from our point of view. With radio galaxies, for example, we see the jets from the side as they’re beaming vast amounts of energy into space. Then there’s blazars, which are a type of AGN that have a jet that is pointed almost directly at Earth, which makes the AGN particularly bright. 
      Blazar 3C 279’s historic gamma-ray flare in 2015 can be seen in this image from the Large Area Telescope on NASA’s Fermi satellite. During the flare, the blazar outshone the Vela pulsar, usually the brightest object in the gamma-ray sky. NASA/DOE/Fermi LAT Collaboration Fermi has been searching the sky for gamma ray sources since 2008. More than half of the sources it has found have been blazars. Gamma rays are useful because they can tell us a lot about how particles accelerate and how they interact with their environment.
      So why do we care about AGN? We know that some AGN formed early in the history of the universe. With their enormous power, they almost certainly affected how the universe changed over time. By discovering how AGN work, we can understand better how the universe came to be the way it is now.
      Share








      Details
      Last Updated Apr 30, 2025 Related Terms
      The Universe Active Galaxies Fermi Gamma-Ray Space Telescope Galaxies Explore More
      8 min read How to Contribute to Citizen Science with NASA


      Article


      24 hours ago
      6 min read Where Does Gold Come From? NASA Data Has Clues


      Article


      1 day ago
      2 min read Hubble Visits Glittering Cluster, Capturing Its Ultraviolet Light


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      Galaxies



      Black Holes



      Telescopes 101



      Fermi


      View the full article
    • By NASA
      The New York Stock Exchange welcomed team members from NASA’s SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) mission to celebrate the launch of the agency’s newest astrophysics observatory to understand the origins and structure of the universe. Image courtesy of NYSE Group Members of NASA’s recently launched SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) mission team participated in the New York Stock Exchange’s closing bell ceremony in New York City on April 22.
      Michael Thelen, SPHEREx flight system manager at NASA’s Jet Propulsion Laboratory in Southern California, is seen here ringing the closing bell. Additional SPHEREx team members from NASA JPL, which manages the mission, and BAE Systems Inc., Space & Mission Systems, which built the telescope and spacecraft bus for NASA, participated.
      The SPHEREx observatory, which launched March 11 from Vandenberg Space Force Base in California on a SpaceX Falcon 9 rocket, will soon begin mapping the universe like none before it. Using 102 color filters to scan the entire sky quickly, SPHEREx will gather data on hundreds of millions of galaxies that will complement the work of more targeted telescopes, like NASA’s Hubble and James Webb space telescopes. Its surveys will help answer some of the biggest questions in astrophysics: what happened in the first second after the big bang, how galaxies form and evolve, and the origins and abundance of water and other key ingredients for life in our galaxy.
      Michael P. Thelen, SPHEREx Observatory Flight System Manager, rings the bell alongside NASA SPHEREx team members at the New York Stock Exchange Tuesday, April 25, 2025. Image courtesy of NYSE Group More About SPHEREx
      SPHEREx is managed by JPL for NASA’s Astrophysics Division within the Science Mission Directorate in Washington. BAE Systems (formerly Ball Aerospace) built the telescope and the spacecraft bus. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions across the U.S. and in South Korea. Data will be processed and archived at IPAC at Caltech, which manages JPL for NASA. The mission principal investigator is based at Caltech with a joint JPL appointment. The SPHEREx dataset will be publicly available.
      For more information on SPHEREx, visit:
      https://www.nasa.gov/spherex
      News Media Contacts
      Alise Fisher
      NASA Headquarters, Washington
      202-358-2546
      alise.m.fisher@nasa.gov
      Calla Cofield
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-808-2469
      calla.e.cofield@jpl.nasa.gov
      View the full article
    • By NASA
      NASA’s SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer), a space telescope, is situated on a work stand ahead of prelaunch operations at the Astrotech Processing Facility at Vandenberg Space Force Base in California on Jan. 16, 2025.Credit: BAE Systems/Benjamin Fry Members of the team behind NASA’s newest space telescope will ring the New York Stock Exchange closing bell in New York City at 4 p.m. EDT on Tuesday, April 22. The team helped build, launch, and operates NASA’s SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) mission to explore the origins of the universe. The New York Stock Exchange will share a recording of the closing bell ceremony on YouTube after the event.
      After launching March 11 from Vandenberg Space Force Base in California on a SpaceX Falcon 9 rocket, SPHEREx will soon begin collecting data on more than 450 million galaxies and 100 million stars in the Milky Way, to improve our understanding of how the universe evolved and search for key ingredients for life in our galaxy. The observatory’s first images confirmed all of the telescope’s systems are working as expected, as the team prepares SPHEREx to begin mapping the entire sky.
      Bell ringers from NASA’s Jet Propulsion Laboratory, which manages the mission, will be joined by team members from BAE Systems Inc., Space & Mission Systems, which built the telescope and spacecraft’s main structure, known as a bus, for NASA.
      For more information on SPHEREx, visit:
      https://www.nasa.gov/spherex
      -end-
      Alise Fisher
      Headquarters, Washington
      202-358-1100
      alise.m.fisher@nasa.gov
      Calla Cofield
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-808-2469
      calla.e.cofield@jpl.nasa.gov
      Share
      Details
      Last Updated Apr 21, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) Jet Propulsion Laboratory NASA Headquarters Science Mission Directorate
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      As an adventurous individual, Becky Brocato, Ph.D.,  has a deep curiosity for understanding the conditions of the human body, especially as it pertains to spaceflight. This passion directly translates to her role at NASA, where Brocato serves as the Element Scientist in the Human Health Countermeasures division and oversees research that seeks to reduce medical risks that astronauts face from spaceflight, ensuring the continual health and safety of current and future NASA astronauts.

      As part of the Human Research Program, the group strives to understand the physiological effects of spaceflight and develop strategies to mitigate any detrimental effects on human health and performance. For Brocato, her role presents the exciting opportunity to tangibly improve the lives of astronauts and actively contribute to the success of their missions.

      Becky Brocato, Human Health Countermeasures Element Scientist for NASA’s Human Research Program “The thrill of my job comes from the sheer audacity of what we are undertaking—enabling humans to conquer the challenges of deep space,” said Brocato. “I’m invested in ensuring our astronauts are not just prepared—but confident—as they tackle immense physical and mental demands.”

      Brocato attributes her early interest in flight and space research to her father and grandfather, who built a plane together when Brocato was younger. She recalls sitting in the plane’s fuselage, pretending she was traveling the world.

      “My dad was my childhood hero for opening my eyes to the skies,” said Brocato. Fueled by this passion, she began her career as an aerospace engineer at the U.S. Army’s Yuma Proving Ground in Arizona, where she tested parachutes for aerial delivery, including the parachute designed for NASA’s X-38 crew return vehicle.

      Now, having worked at NASA for four years, Brocato is excited to pass down her insight to younger generations, teaching them how her work ensures the sustainability of future space missions. Recently, after delivering a seminar on the methods to counter the risks humans face from spaceflight, Brocato spoke with college students eager to learn more about the complexities of the human body.

      Becky Brocato gives a presentation on the research strategy for NASA’s Human Research Program to the Food and Nutrition Risk at the International Space Life Sciences Working Group Plant Symposium, held in Liverpool, England in September 2024.Becky Brocato “I felt like I wasn’t just sharing knowledge; I was helping to inspire a new generation of potential researchers to tackle the challenges of space exploration that was a real bright spot,” said Brocato. “Seeing their enthusiasm reaffirmed exactly why I came to NASA.”

      This enthusiasm manifests in Brocato’s personal life: as a mother, she loves witnessing her child’s reaction to launches. “It was awesome to see the pure, unadulterated awe in my 7-year-old’s eyes when NASA’s SpaceX Crew-8 lifted off,” said Brocato. “Moments like that are a reminder that spaceflight can touch all generations, which fuels my passion both at work and at home.”

      For Brocato, prioritizing her personal time is crucial, and she enjoys spending it pursuing physical activities. She is an avid runner, whether she is jogging to work at NASA’s Johnson Space Center or competing in local adventure races. She has even been skydiving, which is where she met her husband.

      Brocato is excited to witness NASA continue to push boundaries in human exploration, returning to the Moon and onto Mars. As a dedicated worker known for her curiosity and enthusiasm, Brocato’s work is crucial to advancing NASA’s mission.

      NASA’s Space Operations Mission Directorate maintains a continuous human presence in space for the benefit of people on Earth. The programs within the directorate are the hub of NASA’s space exploration efforts, enabling Artemis, commercial space, science, and other agency missions through communication, launch services, research capabilities, and crew support.

      To learn more about NASA’s Space Operation Mission Directorate, visit:  
      https://www.nasa.gov/directorates/space-operations
      Share
      Details
      Last Updated Apr 17, 2025 EditorHeather Monaghan Related Terms
      Space Operations Mission Directorate Explore More
      3 min read Meet the Space Ops Team: Anum Ashraf
      Article 3 weeks ago 3 min read Meet the Space Ops Team: Diana Oglesby
      Article 5 months ago Keep Exploring Discover Related Topics
      Humans In Space
      International Space Station
      Commercial Space
      NASA Directorates
      View the full article
  • Check out these Videos

×
×
  • Create New...