Members Can Post Anonymously On This Site
Second Hubble Web Simulcast Takes Listeners on a Tour of the Cosmos
-
Similar Topics
-
By NASA
Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Hubble and Artificial Intelligence Explore the Night Sky Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 2 min read
Hubble Observations Give “Missing” Globular Cluster Time to Shine
This NASA Hubble Space Telescope image features a dense and dazzling array of blazing stars that form globular cluster ESO 591-12. NASA, ESA, and D. Massari (INAF — Osservatorio di Astrofisica e Scienza dello Spazio); Processing: Gladys Kober (NASA/Catholic University of America)
Download this image
A previously unexplored globular cluster glitters with multicolored stars in this NASA Hubble Space Telescope image. Globular clusters like this one, called ESO 591-12 or Palomar 8, are spherical collections of tens of thousands to millions of stars tightly bound together by gravity. Globular clusters generally form early in the galaxies’ histories in regions rich in gas and dust. Since the stars form from the same cloud of gas as it collapses, they typically hover around the same age. Strewn across this image of ESO 591-12 are a number of red and blue stars. The colors indicate their temperatures; red stars are cooler, while the blue stars are hotter.
Hubble captured the data used to create this image of ESO 591-12 as part of a study intended to resolve individual stars of the entire globular cluster system of the Milky Way. Hubble revolutionized the study of globular clusters since earthbound telescopes are unable to distinguish individual stars in the compact clusters. The study is part of the Hubble Missing Globular Clusters Survey, which targets 34 confirmed Milky Way globular clusters that Hubble has yet to observe.
The program aims to provide complete observations of ages and distances for all of the Milky Way’s globular clusters and investigate fundamental properties of still-unexplored clusters in the galactic bulge or halo. The observations will provide key information on the early stages of our galaxy, when globular clusters formed.
Explore More
Hubble’s Star Clusters
Exploring the Birth of Stars
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
Claire Andreoli
NASA’s Goddard Space Flight Center, Greenbelt, MD
claire.andreoli@nasa.gov
Share
Details
Last Updated Jul 03, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
Hubble Space Telescope Astrophysics Astrophysics Division Galaxies, Stars, & Black Holes Globular Clusters Goddard Space Flight Center Star Clusters Stars Keep Exploring Discover More Topics From Hubble
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Hubble’s Cosmic Adventure
Hubble’s Night Sky Challenge
Hubble’s 35th Anniversary
View the full article
-
By NASA
Dwayne Lavigne works as a controls engineer at NASA’s Stennis Space Center, where he supports NASA’s Artemis mission by programming specialized computers for engine testing.NASA/Danny Nowlin As a controls engineer at NASA’s Stennis Space Center near Bay St. Louis, Mississippi, Dwayne Lavigne does not just fix problems – he helps put pieces together at America’s largest rocket propulsion test site.
“There are a lot of interesting problems to solve, and they are never the same,” Lavigne said. “Sometimes, it is like solving a very cool puzzle and can be pretty satisfying.”
Lavigne programs specialized computers called programmable logic controllers. They are extremely fast and reliable for automating precisely timed operations during rocket engine tests as NASA Stennis supports the agency’s Artemis missions to explore the Moon and build the foundation for the first crewed mission to Mars.
However, the system will not act unless certain parameters are met in the proper sequence. It can be a complex relationship. Sometimes, 20 or 30 things must be in the correct configuration to perform an operation, such as making a valve open or close, or turning a motor on or off.
The Picayune, Mississippi, native is responsible for establishing new signal paths between test hardware and the specialized computers.
He also develops the human machine interface for the controls. The interface is a screen graphic that test engineers use to interact with hardware.
Lavigne has worked with NASA for more than a decade. One of his proudest work moments came when he contributed to development of an automated test sequencing routine used during all RS-25 engine tests on the Fred Haise Test Stand.
“We’ve had many successful tests over the years, and each one is a point of pride,” he said.
When Lavigne works on the test stand, he works with the test hardware and interacts with technicians and engineers who perform different tasks than he does. It provides an appreciation for the group effort it takes to support NASA’s mission.
“The group of people I work with are driven to get the job done and get it done right,” he said.
In total, Lavigne has been part of the NASA Stennis federal city for 26 years. He initially worked as a contractor with the Naval Oceanographic Office as a data entry operator and with the Naval Research Laboratory as a software developer.
September marks 55 years since NASA Stennis became a federal city. NASA, and more than 50 companies, organizations, and agencies located onsite share in operating costs, which allows tenants to direct more of their funding to individual missions.
“Stennis has a talented workforce accomplishing many different tasks,” said Lavigne. “The three agencies I’ve worked with at NASA Stennis are all very focused on doing the job correctly and professionally. In all three agencies, people realize that lives could be at risk if mistakes are made or shortcuts are taken.”
Learn More About Careers at NASA Stennis Explore More
6 min read A Defining Era: NASA Stennis and Space Shuttle Main Engine Testing
Article 1 month ago 4 min read NASA Stennis Releases First Open-Source Software
Article 2 months ago 5 min read NASA Stennis Software is Built for Future Growth
Article 2 months ago View the full article
-
By NASA
ESA/Hubble & NASA, M. J. Koss, A. J. Barth The light that the NASA/ESA Hubble Space Telescope collected to create this image reached the telescope after a journey of 250 million years. Its source was the spiral galaxy UGC 11397, which resides in the constellation Lyra (The Lyre). At first glance, UGC 11397 appears to be an average spiral galaxy: it sports two graceful spiral arms that are illuminated by stars and defined by dark, clumpy clouds of dust.
What sets UGC 11397 apart from a typical spiral lies at its center, where a supermassive black hole containing 174 million times the mass of our Sun grows. As a black hole ensnares gas, dust, and even entire stars from its vicinity, this doomed matter heats up and puts on a fantastic cosmic light show.
Material trapped by the black hole emits light from gamma rays to radio waves, and can brighten and fade without warning. But in some galaxies, including UGC 11397, thick clouds of dust hide much of this energetic activity from view in optical light. Despite this, UGC 11397’s actively growing black hole was revealed through its bright X-ray emission — high-energy light that can pierce the surrounding dust. This led astronomers to classify it as a Type 2 Seyfert galaxy, a category used for active galaxies whose central regions are hidden from view in visible light by a donut-shaped cloud of dust and gas.
Using Hubble, researchers will study hundreds of galaxies that, like UGC 11397, harbor a supermassive black hole that is gaining mass. The Hubble observations will help researchers weigh nearby supermassive black holes, understand how black holes grew early in the universe’s history, and even study how stars form in the extreme environment found at the very center of a galaxy.
Text credit: ESA
Image credit: ESA/Hubble & NASA, M. J. Koss, A. J. Barth
View the full article
-
By NASA
Astrophysics Science Video Producer – Goddard Space Flight Center
Growing up in Detroit with a camera in her hand, Sophia Roberts — now an award-winning astrophysics science video producer—never imagined that one day her path would wind through clean rooms, vacuum chambers, and even a beryllium mine. But framing the final frontier sometimes requires traveling through some of Earth’s less-explored corners.
Sophia Roberts is an astrophysics Science video producer at NASA’s Goddard Space Flight Center in Greenbelt, Md. She films space hardware assembly and explains complicated topics, weaving science and art together.Credit: Courtesy of Sophia Roberts Sophia received her first camera from her father, a photography enthusiast, when she was just five or six years old. “I’ve basically been snapping away ever since!” she says.
With a natural curiosity and enthusiasm for science, Sophia pursued a degree in biology at Oberlin College in Ohio. There, she discovered that she could blend her two passions.
“I often lingered in lab sessions, not to finish an experiment but to photograph it,” Sophia says. “I had an epiphany at the beginning of class one day, which always opened with clips from BBC nature documentaries. I decided right then that I would be one of the people who make those videos one day.”
Part of Sophia’s role currently involves documenting NASA’s Nancy Grace Roman Space Telescope, which is taking shape and being tested at NASA Goddard. She captured a cosmic selfie while photographing the telescope’s primary mirror, which was designed and built by L3Harris Technologies in Rochester, New York, before it was integrated with other components.Credit: NASA/Sophia Roberts She initially thought that meant wildlife filmmaking—perched in a blind on a mountainside, waiting hours for an animal to appear. That dream led her to Montana State University, where she learned to blend scientific rigor with visual storytelling through their science and natural history filmmaking master’s program.
While completing her degree, Sophia worked as a traveling presenter for the Montana Space Grant Consortium. “I was mainly giving presentations about NASA missions and showing kids beautiful images of space,” she says. “That was my first true introduction to NASA. I loved being able to watch the children’s eyes light up when they saw what’s out there in space.”
Sophia then completed an internship at the Smithsonian’s National Museum of Natural History while completing her thesis. Once she graduated, she landed a year-long fellowship at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, as an Earth science news fellow. In this role, she focused on packaging up stories through satellite imagery and explanations.
Sophia holds a Webby award she, Mike McClare (left), and Michael Starobin (right) won for their broadcasts of the James Webb Space Telescope’s launch, deployment, and first images.Credit: James Hartley She leaned into her videography skills in her next role, as part of NASA’s James Webb Space Telescope team.
“Webb is one of my great loves in life,” she says. “I learned to negotiate with engineers for the perfect shot, navigate NASA’s protocols, and work with mission partners. I only spent five years on Webb, but it feels like it was half my life. Still—it was everything.”
That mission took her to some unforgettable places, like a mine in Delta, Utah, where raw material for Webb’s mirrors was unearthed. “It was this giant, spiral pit where they were mining beryllium at just 0.02% concentration,” Sophia says. The process was as otherworldly as the location.
In 2021, Sophia traveled to Delta, Utah to capture behind-the-scenes footage of raw material for the James Webb Space Telescope’s mirrors being unearthed. In this gif, a drone captures an aerial view of the site.Credit: Scott Rogers She also documented thermal vacuum testing at NASA’s Johnson Space Center in Houston in a giant pill-shaped chamber with a 40-foot round door. “I had to take confined space training to crawl around in the area underneath the chamber,” she says. “It felt like spelunking.”
Once Webb launched, Sophia pivoted to covering many of NASA’s smaller astrophysics missions along with the upcoming Nancy Grace Roman Space Telescope. These days, she can often be found gowned up in a “bunny suit” in the largest clean room at Goddard to document space telescope assembly, or in a studio recording science explanations.
Sophia stands in the largest clean room at Goddard, where she documents space hardware coming together. Credit: NASA/Chris Gunn “I love capturing the visual stories and helping fill in the gaps to help people understand NASA research,” Sophia says. “I try to focus on the things that will get people excited about the science so they’ll stop scrolling to find out more.”
For Sophia, the process is often as exhilarating as the result. “I love venturing out to remote places where science is being done,” she says. “I’d love to film a balloon launch in Antarctica someday!”
Jacob Pinter (left), host of NASA’s Curious Universe Podcast, leads a discussion with Sophia Roberts (center), a NASA video producer who documented the Webb project, and Paul Geithner (right), former deputy project manager for NASA’s James Webb Space Telescope, following a screening of the new NASA+ documentary “Cosmic Dawn: The Untold Story of the James Webb Space Telescope,” Wednesday, June 11, 2025, at the Greenbelt Cinema in Greenbelt, Md. Featuring never-before-seen footage, Cosmic Dawn offers an unprecedented glimpse into Webb’s assembly, testing, and launch. Credit: NASA/Joel Kowsky To others who dream of pursuing a similar career, Sophia recommends diving in headfirst. “With cameras readily available and free online platforms, it’s never been easier to get into the media,” she says. “You just have to be careful to research your topic and sources, making sure you really know what you’re sharing and understand that science is always evolving as we learn more.” And Sophia emphasizes how important storytelling is for conveying information, especially when it’s as complex as astrophysics. “Studying science is wonderful, but I also think helping people visualize it is magical.”
By Ashley Balzer
NASA’s Goddard Space Flight Center in Greenbelt, Md.
Share
Details
Last Updated Jun 27, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
People of Goddard James Webb Space Telescope (JWST) Nancy Grace Roman Space Telescope People of NASA View the full article
-
By NASA
2 min read
Hubble Captures an Active Galactic Center
This Hubble image shows the spiral galaxy UGC 11397. ESA/Hubble & NASA, M. J. Koss, A. J. Barth The light that the NASA/ESA Hubble Space Telescope collected to create this image reached the telescope after a journey of 250 million years. Its source was the spiral galaxy UGC 11397, which resides in the constellation Lyra (The Lyre). At first glance, UGC 11397 appears to be an average spiral galaxy: it sports two graceful spiral arms that are illuminated by stars and defined by dark, clumpy clouds of dust.
What sets UGC 11397 apart from a typical spiral lies at its center, where a supermassive black hole containing 174 million times the mass of our Sun grows. As a black hole ensnares gas, dust, and even entire stars from its vicinity, this doomed matter heats up and puts on a fantastic cosmic light show.
Material trapped by the black hole emits light from gamma rays to radio waves, and can brighten and fade without warning. But in some galaxies, including UGC 11397, thick clouds of dust hide much of this energetic activity from view in optical light. Despite this, UGC 11397’s actively growing black hole was revealed through its bright X-ray emission — high-energy light that can pierce the surrounding dust. This led astronomers to classify it as a Type 2 Seyfert galaxy, a category used for active galaxies whose central regions are hidden from view in visible light by a donut-shaped cloud of dust and gas.
Using Hubble, researchers will study hundreds of galaxies that, like UGC 11397, harbor a supermassive black hole that is gaining mass. The Hubble observations will help researchers weigh nearby supermassive black holes, understand how black holes grew early in the universe’s history, and even study how stars form in the extreme environment found at the very center of a galaxy.
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight Center, Greenbelt, MD
Share
Details
Last Updated Jun 27, 2025 Related Terms
Hubble Space Telescope Keep Exploring Discover More Topics From Hubble
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Hubble’s Galaxies
Galaxy Details and Mergers
Hubble’s Night Sky Challenge
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.