Jump to content

NASA Announces Selections for Lunar Comms, Network Studies


Recommended Posts

  • Publishers
Posted

NASA has selected Intuitive Machines of Houston and Aalyria Technologies Inc. of Livermore, California, to perform capability studies with the goal of advancing space communications and exploration technologies. These studies will allow NASA to gain insights into industry capabilities and innovations to facilitate NASA partnerships with commercial communications and navigation providers.

The awards, under the Next Space Technologies for Exploration Partnerships-2 (Next STEP-2) Broad Agency Announcement (BAA) Appendix Q, are firm fixed-price milestone-based contracts.

Intuitive Machines is awarded $647,600 — Study Area No. 1, Lunar User Terminals and Network Orchestration — to conduct state-of-the-art studies and demonstrations for a dual-purpose navigation and communication lunar surface user terminal. The terminal will support lunar surface exploration planning and ensure interoperability with future LunaNet compatible service providers working in partnership with NASA, ESA (European Space Agency), and other space agencies.

Aalyria Technologies is awarded $393,004 — Study Area No. 2, Network Orchestration and Management System (NOMS) — to provide NASA with insights on advanced Network Orchestration and Management Systems that effectively address NASA’s need to integrate into multiple commercial and government communication service providers supporting the Near Space Network.

NASA’s Near Space Network is managed by the agency’s Goddard Space Flight Center in Greenbelt, Maryland, under the direction of the agency’s SCaN (Space Communications and Navigation) program office within the Space Operations Mission Directorate at NASA Headquarters in Washington. The Near Space Network provides NASA missions with robust communications services through an interoperable architecture composed of a mixture of existing NASA and commercial services.

“These awards are part of NASA’s continuing effort to build commercial partnerships to help support increasingly sophisticated and high-demand space missions,” said Greg Heckler, new capability lead for the SCaN Program at NASA Headquarters in Washington. “Seamless interoperability across networks, from here on Earth to cislunar space, is an essential element of SCaN’s emerging ‘one network’ approach. These awards will move us one step closer to realizing that future.”

The innovative studies delivered by industry through the Next Space Technologies for Exploration (NextSTEP) – 2 Omnibus Broad Agency Announcement vehicle bolster the agency’s goal to create a reliable, robust, and cost-effective set of commercial services in which NASA is one of many customers.

Learn more about the NextSTEP public-private partnership model at:

https://www.nasa.gov/nextstep

-end-

Jeremy Eggers
Goddard Space Flight Center, Greenbelt, Md.
757-824-2958
jeremy.l.eggers@nasa.gov

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      6 Min Read NASA International Space Apps Challenge Announces 2024 Global Winners
      The 2024 NASA Space Apps Challenge was hosted at 485 events in 163 countries and territories. Credits: NASA NASA Space Apps has named 10 global winners, recognizing teams from around the world for their exceptional innovation and collaboration during the 2024 NASA Space Apps Challenge. As the largest annual global hackathon, this event invites participants to leverage open data from NASA and its space agency partners to tackle real-world challenges on Earth and in space.
      Last year’s hackathon welcomed 93,520 registered participants, including space, science, technology, and storytelling enthusiasts of all ages. Participants gathered at local events in 163 countries and territories, forming teams to address the challenges authored by NASA subject matter experts. These challenges included subjects/themes/questions in ocean ecosystems, exoplanet exploration, Earth observation, planetary seismology, and more.
      The 2024 Global Winners were determined out of 9,996 project submissions and judged by subject matter experts from NASA and space agency partners.
      “These 10 exceptional teams created projects that reflect our commitment to understanding our planet and exploring beyond, with the potential to transform Earth and space science for the benefit of all,” said Dr. Keith Gaddis, NASA Space Apps Challenge program scientistat NASA Headquarters in Washington. “The NASA Space Apps Challenge showcases the potential of every idea and individual. I am excited to see how these innovators will shape and inspire the future of science and exploration.”
      You can watch the Global Winners Announcement here to meet these winning teams and learn about the inspiration behind their projects.
      2024 NASA Space Apps Challenge Global Winners
      Best Use of Science Award: WMPGang
      Team Members: Dakota C., Ian C., Maximilian V., Simon S.
      Challenge: Create an Orrery Web App that Displays Near-Earth Objects
      Country/Territory: Waterloo,Canada
      Using their skills in programming, data analysis, and visualization, WMPGang created a web app that identifies satellite risk zones using real-time data on Near-Earth Objects and meteor streams.
      Learn more about WMPGang’s SkyShield: Protecting Earth and Satellites from Space Hazards project Best Use of Data Award: GaamaRamma
      Team Members: Aakash H., Arun G., Arthur A., Gabriel A., May K.
      Challenge: Leveraging Earth Observation Data for Informed Agricultural Decision-Making
      Country/Territory: Universal Event, United States
      GaamaRamma’s team of tech enthusiasts aimed to create a sustainable way to help farmers efficiently manage water availability in the face of drought, pests, and disease.
      Learn more about GaamaRamma’s Waterwise project Best Use of Technology Award: 42 QuakeHeroes
      Team Members: Alailton A., Ana B., Gabriel C., Gustavo M., Gustavo T., Larissa M.
      Challenge: Seismic Detection Across the Solar System
      Country/Territory: Maceió, Brazil
      Team 42 QuakeHeroes employed a deep neural network model to identify the precise locations of seismic events within time-series data. They used advanced signal processing techniques to isolate and analyze unique components of non-stationary signals.
      Learn more about 42 QuakeHeroes’ project Galactic Impact Award: NVS-knot
      Team Members: Oksana M., Oleksandra M., Prokipchyn Y., Val K.
      Challenge:  Leveraging Earth Observation Data for Informed Agricultural Decision-Making
      Country/Territory: Kyiv, Ukraine
      The NVS-knot team assessed planting conditions using surface soil moisture and evapotranspiration data, then created an app that empowers farmers to manage planting risks.
      Learn more about NVS-knot’s 2plant | ! 2plant project Best Mission Concept Award: AsturExplorers
      Team Members: Coral M., Daniel C., Daniel V., Juan B., Samuel G., Vladimir C.
      Challenge: Landsat Reflectance Data: On the Fly and at Your Fingertips
      Country/Territory: Gijón, Spain
      AsturExplorers created Landsat Connect, a web app that provides a simple, intuitive way to track Landast satellites and access Landsat surface reflectance data. The app also allows users to set a target location and receive notifications when Landsat satellites pass over their area.
      Learn more about AsturExplorers’ Landsat Connect project Most Inspirational Award: Innovisionaries
      Team Members: Rikzah K., Samira K., Shafeeqa J., Umamah A.
      Challenge: SDGs in the Classroom
      Country/Territory: Sharjah, United Arab Emirates
      Innovisionaries developed Eco-Metropolis to inspire sustainability through gameplay. This city-building game engages players in making critical urban planning and resource management decisions based on real-world environmental data.
      Learn more about Innovisionaries’ Eco-Metropolis: Sustainable City Simulation project Best Storytelling Award: TerraTales
      Team Members: Ahmed R., Fatma E., Habiba A., Judy A., Maya M.
      Challenge: Tell Us a Climate Story!
      Country/Territory: Cairo, Egypt
      TerraTales shared stories of how Earth’s changing climate affects three unique regions: Egypt, Brazil, and Germany. The web app also features an artificial intelligence (AI) model for climate forecasting and an interactive game to encourage users to make eco-friendly choices.
      Learn more about TerraTale’s project Global Connection Award: Asteroid Destroyer
      Team Members: Kapeesh K., Khoi N., Sathyajit L., Satyam S.
      Challenge: Navigator for the Habitable Worlds Observatory (HWO): Mapping the Characterizable Exoplanets in our Galaxy
      Country/Territory: Saskatoon, Canada
      Team Asteroid Destroyer honed in on exoplanets, utilizing data processing and machine learning techniques to map exoplanets based on size, temperature, and distance.
      Learn more about Asteroid Destroyer’s project Art & Technology Award: Connected Earth Museum
      Team Members: Gabriel M., Luc R., Lucas R., Mattheus L., Pedro C., Riccardo S.
      Challenge: Imagine our Connected Earth
      Country/Territory: Campinas, Brazil
      Team Connected Earth Museum created an immersive virtual museum experience to raise awareness of Earth’s changing climate. An AI host guides users through an interactive gallery featuring 3D and 2D visualizations, including a time series on Earth and ocean temperatures, population density, wildfires, and more.
      Learn more about Connected Earth Museums’ project Local Impact Award: Team I.O.
      Team Members: Frank R., Jan K., Raphael R., Ryan Z., Victoria M.
      Challenge: Community Mapping
      Country/Territory: Florianópolis, Brazil
      Team I.O. bridges the gap between complex Geographic Information Systems data and user-friendly communication, making critical environmental information accessible to everyone, regardless of technical expertise.
      Learn more about Team I.O.’s G.R.O.W. (Global Recovery and Observation of Wildfires) project Want to take part in the 2025 NASA Space Apps Challenge? Mark your calendars for October 4 and 5! Registration will open in July. At that time, participants will be able to register for a local event hosted by NASA Space Apps leads from around the world. You can stay connected with NASA Space Apps on Facebook, Instagram, and X.
      Space Apps is funded by NASA’s Earth Science Division through a contract with Booz Allen Hamilton, Mindgrub, and SecondMuse.
      Share
      Details
      Last Updated Jan 16, 2025 Related Terms
      STEM Engagement at NASA Earth View the full article
    • By NASA
      On Dec. 19, 2024, NASA released two amendments to the NASA Research Announcement Research Opportunities in Space and Earth Sciences (ROSES) 2024 (NNH24ZDA001N) to announce the E.9 Space Biology: Research Studies and E.12 Physical Sciences Research Studies program elements.  
      Space Biology Proposals 
      The research emphases of E.9 Space Biology: Research Studies fall under two broad categories: Precision Health and Space Crops  
      For Precision Health-focused studies, investigators may propose to use any non-primate animal model system and any appropriate cell/tissue culture/microphysiological system/organoid or microbial models that are supported by the chosen platform.   For Space Crop-focused studies, applicants may propose to use any plant, relevant microbe, and/or plant and microbe model system(s) that is (are) supported by the chosen platform.   The E.9 Space Biology: Research Studies opportunity includes five different Project Types: Research Investigations, Early Career Research Investigations, New NASA Investigators, OSDR Analytical Investigations, and Tissue Sharing Investigations. Specific requirements for each of these Project Types are described in the program element text. Questions concerning E.9 Space Biology: Research Studies may be directed to Lynn Harrison (for Precision Health) and Elison Blancaflor (for Space Crops) at nasa-spacebiology@mail.nasa.gov.  
      Physical Sciences Proposals 
      E.12 Physical Sciences: Research Studies solicits proposals to investigate physical phenomena in the absence of gravity and fundamental laws that describe the universe, and applied research that contributes to the basic understanding of processes underlying space exploration technologies.  
      The Physical Sciences program is divided into two key goals: Foundations and Quantum Leaps. Foundations focuses on understanding the behavior of fluids, combustion, soft matter, and materials in the spaceflight environment. Quantum Leaps aims to probe the very nature of the universe using exquisitely precise space-based quantum sensors to test the Einstein equivalence principle, dark sector physics, and the nature of fundamental physical constants.  
      The E.12 Physical Sciences: Research Studies opportunity will include four different Project Types: Research Investigations, New NASA Investigators, Physical Sciences Informatics, and Fundamental Physics Investigations. Specific requirements for each of these Project Types are described in detail in the program element text. Questions concerning E.12 Physical Sciences Research Studies may be directed to Brad Carpenter (regarding Foundations and PSI) or Mike Robinson (regarding Quantum Leaps) by writing to BPS-PhysicalSciences@nasaprs.com.  
      Town Hall 
      A pre-proposer’s townhall for applicants interested in submitting a proposal to these program elements will be held virtually on Jan. 22, 2025, at 3 p.m. Eastern Time. Meeting information will be posted on the NSPIRES page for each of the program elements under “Other Documents.” 
      Proposals to these program elements shall be submitted via a two-step process  
      Step-1 proposals must be submitted by Feb. 4, 2025   Step-2 proposals are due on May 6, 2025  Related Resources: 
      PSI Database is Live with New Features to Improve User Experience  Space Biology  Physical Sciences  View the full article
    • By NASA
      Creating a golden streak in the night sky, a SpaceX Falcon 9 rocket carrying Firefly Aerospace’s Blue Ghost Mission One lander soars upward after liftoff from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on Wednesday, Jan. 15, as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative. The Blue Ghost lander will carry 10 NASA science and technology instruments to the lunar surface to further understand the Moon and help prepare for future human missions.Credit: NASA/Frank Michaux A suite of NASA scientific investigations and technology demonstrations is on its way to our nearest celestial neighbor aboard a commercial spacecraft, where they will provide insights into the Moon’s environment and test technologies to support future astronauts landing safely on the lunar surface under the agency’s Artemis campaign.
      Carrying science and tech on Firefly Aerospace’s first CLPS or Commercial Lunar Payload Services flight for NASA, Blue Ghost Mission 1 launched at 1:11 a.m. EST aboard a SpaceX Falcon 9 rocket from Launch Complex 39A at the agency’s Kennedy Space Center in Florida. The company is targeting a lunar landing on Sunday, March 2.
      “This mission embodies the bold spirit of NASA’s Artemis campaign – a campaign driven by scientific exploration and discovery,” said NASA Deputy Administrator Pam Melroy. “Each flight we’re part of is vital step in the larger blueprint to establish a responsible, sustained human presence at the Moon, Mars, and beyond. Each scientific instrument and technology demonstration brings us closer to realizing our vision. Congratulations to the NASA, Firefly, and SpaceX teams on this successful launch.” 
      Once on the Moon, NASA will test and demonstrate lunar drilling technology, regolith (lunar rocks and soil) sample collection capabilities, global navigation satellite system abilities, radiation tolerant computing, and lunar dust mitigation methods. The data captured could also benefit humans on Earth by providing insights into how space weather and other cosmic forces impact our home planet.  
      “NASA leads the world in space exploration, and American companies are a critical part of bringing humanity back to the Moon,” said Nicola Fox, associate administrator, Science Mission Directorate, NASA Headquarters in Washington. “We learned many lessons during the Apollo Era which informed the technological and science demonstrations aboard Firefly’s Blue Ghost Mission 1 – ensuring the safety and health of our future science instruments, spacecraft, and, most importantly, our astronauts on the lunar surface. I am excited to see the incredible science and technological data Firefly’s Blue Ghost Mission 1 will deliver in the days to come.”
      As part of NASA’s modern lunar exploration activities, CLPS deliveries to the Moon will help humanity better understand planetary processes and evolution, search for water and other resources, and support long-term, sustainable human exploration of the Moon in preparation for the first human mission to Mars. 
      There are 10 NASA payloads flying on this flight:
      Lunar Instrumentation for Subsurface Thermal Exploration with Rapidity (LISTER) will characterize heat flow from the interior of the Moon by measuring the thermal gradient and conductivity of the lunar subsurface. It will take several measurements to about a 10-foot final depth using pneumatic drilling technology with a custom heat flow needle instrument at its tip. Lead organization: Texas Tech University  Lunar PlanetVac (LPV) is designed to collect regolith samples from the lunar surface using a burst of compressed gas to drive the regolith into a sample chamber for collection and analysis by various instruments. Additional instrumentation will then transmit the results back to Earth. Lead organization: Honeybee Robotics   Next Generation Lunar Retroreflector (NGLR) serves as a target for lasers on Earth to precisely measure the distance between Earth and the Moon. The retroreflector that will fly on this mission could also collect data to understand various aspects of the lunar interior and address fundamental physics questions. Lead organization: University of Maryland Regolith Adherence Characterization (RAC) will determine how lunar regolith sticks to a range of materials exposed to the Moon’s environment throughout the lunar day. The RAC instrument will measure accumulation rates of lunar regolith on the surfaces of several materials including solar cells, optical systems, coatings, and sensors through imaging to determine their ability to repel or shed lunar dust. The data captured will allow the industry to test, improve, and protect spacecraft, spacesuits, and habitats from abrasive regolith. Lead organization: Aegis Aerospace  Radiation Tolerant Computer (RadPC) will demonstrate a computer that can recover from faults caused by ionizing radiation. Several RadPC prototypes have been tested aboard the International Space Station and Earth-orbiting satellites, but now will demonstrate the computer’s ability to withstand space radiation as it passes through Earth’s radiation belts, while in transit to the Moon, and on the lunar surface. Lead organization: Montana State University  Electrodynamic Dust Shield (EDS) is an active dust mitigation technology that uses electric fields to move and prevent hazardous lunar dust accumulation on surfaces. The EDS technology is designed to lift, transport, and remove particles from surfaces with no moving parts. Multiple tests will demonstrate the feasibility of the self-cleaning glasses and thermal radiator surfaces on the Moon. In the event the surfaces do not receive dust during landing, EDS has the capability to re-dust itself using the same technology. Lead organization: NASA’s Kennedy Space Center  Lunar Environment heliospheric X-ray Imager (LEXI) will capture a series of X-ray images to study the interaction of solar wind and the Earth’s magnetic field that drives geomagnetic disturbances and storms. Deployed and operated on the lunar surface, this instrument will provide the first global images showing the edge of Earth’s magnetic field for critical insights into how space weather and other cosmic forces surrounding our planet impact it. Lead organizations: NASA’s Goddard Space Flight Center, Boston University, and Johns Hopkins University  Lunar Magnetotelluric Sounder (LMS) will characterize the structure and composition of the Moon’s mantle by measuring electric and magnetic fields. This investigation will help determine the Moon’s temperature structure and thermal evolution to understand how the Moon has cooled and chemically differentiated since it formed. Lead organization: Southwest Research Institute Lunar GNSS Receiver Experiment (LuGRE) will demonstrate the possibility of acquiring and tracking signals from Global Navigation Satellite System constellations, specifically GPS and Galileo, during transit to the Moon, during lunar orbit, and on the lunar surface. If successful, LuGRE will be the first pathfinder for future lunar spacecraft to use existing Earth-based navigation constellations to autonomously and accurately estimate their position, velocity, and time. Lead organizations: NASA Goddard, Italian Space Agency Stereo Camera for Lunar Plume-Surface Studies (SCALPSS) will use stereo imaging photogrammetry to capture the impact of rocket plume on lunar regolith as the lander descends on the Moon’s surface. The high-resolution stereo images will aid in creating models to predict lunar regolith erosion, which is an important task as bigger, heavier payloads are delivered to the Moon in close proximity to each other. This instrument also flew on Intuitive Machine’s first CLPS delivery. Lead organization: NASA’s Langley Research Center  “With 10 NASA science and technology instruments launching to the Moon, this is the largest CLPS delivery to date, and we are proud of the teams that have gotten us to this point,” said Chris Culbert, program manager for the Commercial Lunar Payload Services initiative at NASA’s Johnson Space Center in Houston. “We will follow this latest CLPS delivery with more in 2025 and later years. American innovation and interest to the Moon continues to grow, and NASA has already awarded 11 CLPS deliveries and plans to continue to select two more flights per year.”
      Firefly’s Blue Ghost lander is targeted to land near a volcanic feature called Mons Latreille within Mare Crisium, a more than 300-mile-wide basin located in the northeast quadrant of the Moon’s near side. The NASA science on this flight will gather valuable scientific data studying Earth’s nearest neighbor and helping pave the way for the first Artemis astronauts to explore the lunar surface later this decade.
      Learn more about NASA’s CLPS initiative at:
      https://www.nasa.gov/clps
      -end-
      Amber Jacobson / Karen Fox
      Headquarters, Washington
      202-358-1600
      amber.c.jacobson@nasa.gov / karen.c.fox@nasa.gov
      Natalia Riusech / Nilufar Ramji
      Johnson Space Center, Houston
      281-483-5111
      nataila.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
      Antonia Jaramillo
      Kennedy Space Center, Florida
      321-501-8425
      antonia.jaramillobotero@nasa.gov
      Share
      Details
      Last Updated Jan 15, 2025 LocationNASA Headquarters Related Terms
      Commercial Lunar Payload Services (CLPS) Artemis Earth's Moon Johnson Space Center Kennedy Space Center Lunar Science Science & Research Science Mission Directorate View the full article
    • By NASA
      Firefly Aerospace’s Blue Ghost lander getting encapsulated in SpaceX’s rocket fairing ahead of the planned liftoff for 1:11 a.m. EST Jan. 15 from Launch Complex 39A at NASA’s Kennedy Space Center in FloridaSpaceX As part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, the agency is preparing to fly ten instruments aboard Firefly Aerospace’s first delivery to the Moon. These science payloads and technology demonstrations will help advance our understanding of the Moon and planetary processes, while paving the way for future crewed missions on the Moon and beyond, for the benefit of all.
      Firefly’s lunar lander, named Blue Ghost, is scheduled to launch on a SpaceX Falcon 9 rocket Wednesday, Jan.15, from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. After a 45-day cruise phase, Blue Ghost is targeted to land near a volcanic feature called Mons Latreille within Mare Crisium, a basin approximately 340 miles wide (550 kilometers) located in the northeast quadrant of the Moon’s near side.
      How can we enable more precise navigation on the Moon? How do spacecraft interact with the lunar surface? How does Earth’s magnetic field influence the effects of space weather on our home planet? NASA’s instruments on this flight will conduct first-of-their-kind demonstrations to help answer these questions and more, including testing regolith sampling technologies, lunar subsurface drilling capabilities, increasing precision of positioning and navigation abilities, testing radiation tolerant computing, and learning how to mitigate lunar dust during lunar landings.

      The ten NASA payloads aboard Firefly’s Blue Ghost lander include:

      Lunar Instrumentation for Subsurface Thermal Exploration with Rapidity (LISTER) will measure heat flow from the Moon’s interior by measuring the thermal gradient, or changes in temperature at various depths, and thermal conductivity, or the subsurface material’s ability to let heat pass through it. LISTER will take several measurements up to 10 feet deep using pneumatic drilling technology with a custom heat flow needle instrument at its tip. Data from LISTER will help scientists retrace the Moon’s thermal history and understand how it formed and cooled. Lead organization: Texas Tech University
      Lunar PlanetVac (LPV) is designed to collect regolith samples from the lunar surface using a burst of compressed gas to drive the regolith into a sample chamber (sieving) for collection and analysis by various instruments. Additional instrumentation will then transmit the results back to Earth. The LPV payload is designed to help increase the science return from planetary missions by testing low-cost technologies for collecting regolith samples in-situ. Lead organization: Honeybee Robotics
      Next Generation Lunar Retroreflector (NGLR) serves as a target for lasers on Earth to precisely measure the distance between Earth and the Moon by reflecting very short laser pulses from Earth-based Lunar Laser Ranging Observatories. The laser pulse transit time to the Moon and back is used to determine the distance. Data from NGLR could improve the accuracy of our lunar coordinate system and contribute to our understanding of the inner structure of the Moon and fundamental physics questions. Lead organization: University of Maryland
      Regolith Adherence Characterization (RAC) will determine how lunar regolith sticks to a range of materials exposed to the Moon’s environment throughout the lunar day. RAC will measure accumulation rates of lunar regolith on surfaces (for example, solar cells, optical systems, coatings, and sensors) through imaging to determine their ability to repel or shed lunar dust. The data captured will help test, improve, and protect spacecraft, spacesuits, and habitats from abrasive regolith. Lead organization: Aegis Aerospace
      Radiation Tolerant Computer (RadPC) will demonstrate a computer that can recover from faults caused by ionizing radiation. Several RadPC prototypes have been tested aboard the International Space Station and Earth-orbiting satellites, but this flight will provide the biggest trial yet by demonstrating the computer’s ability to withstand space radiation as it passes through Earth’s radiation belts, while in transit to the Moon, and on the lunar surface. Lead organization: Montana State University
      Electrodynamic Dust Shield (EDS) is an active dust mitigation technology that uses electric fields to move and prevent hazardous lunar dust accumulation on surfaces. EDS is designed to lift, transport, and remove particles from surfaces with no moving parts. Multiple tests will demonstrate the feasibility of the self-cleaning glasses and thermal radiator surfaces on the Moon. In the event the surfaces do not receive dust during landing, EDS has the capability to re-dust itself using the same technology. Lead organization: NASA’s Kennedy Space Center
      Lunar Environment heliospheric X-ray Imager (LEXI) will capture a series of X-ray images to study the interaction of solar wind and Earth’s magnetic field that drives geomagnetic disturbances and storms. Deployed and operated on the lunar surface, this instrument will provide the first global images showing the edge of Earth’s magnetic field for critical insights into how space weather and other cosmic forces surrounding our planet impact Earth. Lead organizations: Boston University, NASA’s Goddard Space Flight Center, and Johns Hopkins University
      Lunar Magnetotelluric Sounder (LMS) will characterize the structure and composition of the Moon’s mantle by measuring electric and magnetic fields. This investigation will help determine the Moon’s temperature structure and thermal evolution to understand how the Moon has cooled and chemically differentiated since it formed. Lead organization: Southwest Research Institute
      Lunar GNSS Receiver Experiment (LuGRE) will demonstrate the possibility of acquiring and tracking signals from GNSS (Global Navigation Satellite System) constellations, specifically GPS and Galileo, during transit to the Moon, during lunar orbit, and on the lunar surface. If successful, LuGRE will be the first pathfinder for future lunar spacecraft to use existing Earth-based navigation constellations to autonomously and accurately estimate their position, velocity, and time. Lead organizations: NASA Goddard, Italian Space Agency
      Stereo Camera for Lunar Plume-Surface Studies (SCALPSS) will use stereo imaging photogrammetry to capture the impact of the rocket exhaust plume on lunar regolith as the lander descends on the Moon’s surface. The high-resolution stereo images will aid in creating models to predict lunar regolith erosion, which is an important task as bigger, heavier spacecraft and hardware are delivered to the Moon in close proximity to each other. This instrument also flew on Intuitive Machines’ first CLPS delivery. Lead organization: NASA’s Langley Research Center 
      Through the CLPS initiative, NASA purchases lunar landing and surface operations services from American companies. The agency uses CLPS to send scientific instruments and technology demonstrations to advance capabilities for science, exploration, or commercial development of the Moon. By supporting a robust cadence of lunar deliveries, NASA will continue to enable a growing lunar economy while leveraging the entrepreneurial innovation of the commercial space industry.

      Learn more about CLPS and Artemis at: http://www.nasa.gov/clps 

      Alise Fisher
      Headquarters, Washington
      202-358-2546
      alise.m.fisher@nasa.gov

      Natalia Riusech / Nilufar Ramji  
      Johnson Space Center, Houston 
      281-483-5111 
      natalia.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
      View the full article
    • By NASA
      Learn Home First NASA Neurodiversity… Heliophysics Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   2 min read
      First NASA Neurodiversity Network Intern to Present at the American Geophysical Union Annual Conference
      The NASA Science Activation Program’s NASA’s Neurodiversity Network (N3) project sponsors a summer internship program for high school students, in which learners on the autism spectrum are matched with NASA Subject Matter Experts. N3 intern Lillian Hall and mentor Dr. Juan Carlos Martinez Oliveros presented Lilly’s summer research project on December 9 at the 2024 American Geophysical Union conference in Washington, D.C. Their poster, entitled “Eclipse Megamovie: Image Processing”, represents the first time an N3 intern has co-authored a presentation at the prestigious AGU conference.
      The NASA Citizen Science project, Eclipse Megamovie, is leveraging the power of citizen science to construct a high-resolution time-lapse of the Sun’s corona during the April 8, 2024 total solar eclipse. By coordinating the work of hundreds of participants along the path of totality, a substantial dataset of images was obtained. The goal of the project is to unveil dynamic transformations in the Sun’s atmosphere that are only visible during a total solar eclipse.
      To process the vast quantity of imaging data collected, Lilly assisted Dr. Martinez Oliveros and other researchers in implementing a robust pipeline involving image calibration, registration, and co-location. Image registration techniques aligned the solar features across different frames, compensating for Earth’s rotation and camera movement. Finally, they used imaging techniques to enhance the signal-to-noise ratio, revealing subtle coronal structures and possible dynamics. This comprehensive data processing methodology has enabled the extraction of meaningful scientific information from the Eclipse Megamovie dataset.
      Here’s what Lilly had to say: “Working with N3 has given me a chance to use my neurodiverse perspective to make an impact on NASA research. Through the processes of my project and the opportunity to share it at the American Geophysical Union conference, I am so grateful to have found my spot in the planetary science field I dream to continue researching in the future.”
      Learn more about NASA Citizen Science and how you can participate (participation does not require citizenship in any particular country): https://science.nasa.gov/citizen-science/
      The N3 project is supported by NASA under cooperative agreement award number 80NSSC21M0004 and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      https://www.agu.org/annual-meeting/schedule
      Lilly Hall with her Eclipse Megamovie Image Processing poster. Kristen Hall Share








      Details
      Last Updated Jan 10, 2025 Editor NASA Science Editorial Team Related Terms
      Citizen Science Heliophysics Planetary Geosciences & Geophysics Science Activation Explore More
      2 min read NASA eClips Educator Receives 2024 VAST Science Educator Specialist Award


      Article


      3 days ago
      5 min read NASA’s LEXI Will Provide X-Ray Vision of Earth’s Magnetosphere


      Article


      1 week ago
      2 min read NASA Workshops Culturally Inclusive Planetary Engagement with Educators


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
  • Check out these Videos

×
×
  • Create New...