Jump to content

Launch Your Creativity with These Space Crafts!


Recommended Posts

  • Publishers
Posted

9 min read

Launch Your Creativity with These Space Crafts!

intro-collage-image.png?w=2048

In honor of the completion of our Nancy Grace Roman Space Telescope’s spacecraft — the vehicle that will maneuver the observatory to its place in space and enable it to function once there — we’re bringing you some space crafts you can complete at home!

Join us for a journey across the cosmos, starting right in your own pantry. 

slime-card.png?w=1800

Stardust Slime

Did you know that most of your household ingredients are made of stardust? And so are you! Nearly every naturally occurring element was forged by living or dying stars. 
Take the baking soda in this slime recipe, for example. It’s made up of sodium, hydrogen, carbon, and oxygen. The hydrogen was made during the big bang, right at the start of the universe. But the other three elements were created by dying stars. So when you show your friends your space-y slime, you can tell them it’s literally made of stardust!

Instructions:

  • 1 5 oz. bottle clear glue
  • ½ tablespoon baking soda
  • food coloring
  • 1 tablespoon contact lens solution
  • 1 tablespoon glitter

Directions:

Pour the glue into a bowl

Mix in the baking soda

Add food coloring (we recommend blue, purple, black, or a combination).

Add contact lens solution and use your hands to work it through the slime. It will initially be very sticky! You can add a little extra contact lens solution to make it firmer and less goopy.

Add glitter a teaspoon at a time, using as much or as little as you like!

sucker-card.png?w=1800

Space Suckers

Now let’s travel a little farther, past Earth’s atmosphere and into the realm of space. That’s where Roman is headed once the whole observatory is complete and passes all of its testing!

Roman will scan the skies from space to make it extra sensitive to faint infrared light. It’s harder to see from the ground because our atmosphere scatters and absorbs infrared radiation, which obscures observations. 
Some astronauts have reported that space smells metallic or like gunpowder, but don’t worry — you can choose a more pleasant flavor for your space suckers!

Ingredients

  • 2 cups sugar
  • 2/3 cup light corn syrup
  • 2/3 cup water
  • gel food coloring
  • flavor oil
  • edible glitter dust
  • sucker sticks
  • sucker mold

Directions

Prep the molds by adding sucker sticks.

Mix sugar, light corn syrup, and water together in a pot on the stove over medium heat.

Turn it up to medium-high heat and let it boil without stirring for about 6 minutes.

Quickly stir in the flavor oil of your choice, gel food coloring, plus as much edible glitter as you like (reserve some for dusting).

Carefully but quickly spoon the mixture into the molds. Spin the sticks so they’re evenly coated. Add a sprinkle of reserved edible glitter and allow to harden.” An image on the left side of the card shows the result: a deep purple sucker with silver glitter embedded.

fizzy-planet-card.png?w=1800

Fizzy Planets

As we move toward our outer solar system, we’ll pass the orbits of the gas giant planets Jupiter and Saturn. While they don’t actually fizz like the mini planets you can make at home, they do have some pretty exotic chemistry that stems from their extreme pressures, temperatures, and compositions. For example, the hydrogen in their cores behaves like liquid metal instead of a gas. It even conducts electricity!

Roman will use multiple planet-spotting techniques –– microlensing, transits, and direct imaging –– to help us study a variety of worlds, including both gas giants and rocky worlds similar to our own.

Ingredients

  • 3 cups baking soda
  • ¾ cup water
  • food coloring
  • ¼ cup vinegar

Directions

Mix a few drops of food coloring into ¼ cup of water and pour into a bowl with 1 cup of baking soda.

Repeat step one two more times using different colors.

Scoop together bits from each mixture to form small balls. Add an extra splash of water to any mixture that’s too crumbly.

Douse the balls with vinegar using an eye dropper or teaspoon and watch them fizz!

marshmallow-constellation-card-1.png?w=1

Marshmallow Constellations

As we venture farther out into space, we’ll reach some familiar stars! Constellations are groups of stars that appear close together in the sky as seen from Earth. But if you actually journeyed out to them, you might be surprised to discover that they’re often super far apart from each other!

Though constellations aren’t made of stars that are actually bound together in any way, they can still be useful for referencing a cosmic object’s location in the sky. For example, you can use a pair of binoculars or a telescope to take a look at the nebula found beneath Orion’s Belt, marked by the glitter patch in the recipe card above! You can find the constellation printables here.

Supplies

  • toothpicks or mini pretzel sticks
  • mini marshmallows
  • constellation printables
  • scissors

Directions

Attach marshmallows to toothpicks or pretzel sticks using the constellation cards as a guide. Carefully trim toothpicks or pretzel sticks as needed using scissors.

bath-bomb-card.png?w=1800

Black Hole Bath Bombs

Black holes –– objects with such strong gravity that not even light can escape their clutches –– lurk unseen throughout our galaxy. Stray too close to one and you’re in for a wild ride! But they aren’t cosmic vacuum cleaners, despite what you may have grown to believe. Just keep your distance and they’ll affect you the same way as any other object of the same mass.
Astronomers have found dozens of black holes in our galaxy by seeing how their gravity affects nearby objects. But there may be 100 million more that lack a visible companion to signal their presence. Roman will find some of these solitary black holes by seeing how their gravity focuses the light from farther stars.

Ingredients

  • 1 cup baking soda
  • ½ cup citric acid
  • ½ cup cornstarch
  • 2 tablespoons coconut oil
  • black food coloring
  • optional: 2 teaspoons essential oil for scent
  • optional: ½ cup Epsom salt

Directions

Mix the baking soda, citric acid, cornstarch, and Epsom salt (optional) together in a bowl.

In a separate bowl, mix the coconut oil, food coloring, and essential oil (optional).

Pour the liquid mixture into the dry mixture slowly while whisking it all together. Add a couple tiny splashes of water and whisk it in quickly.

Tightly press the mixture into round molds. Leave them for a few hours and then they’ll be ready to use!

galaxy-jar-card.png?w=1800

Galaxy in a Jar

Now let’s go so far we can see our Milky Way galaxy from the outside — something many astronomers probably wish they could do at times! 
Sort of like how Earth’s atmosphere can affect our view of space, dust in our galaxy can get in the way, too. That makes it easier to study other galaxies than our own in some ways! Roman’s combination of a large field of view, crisp resolution, and the ability to peer through dust make it the ideal instrument to study the Milky Way. The mission will build on previous observations to generate the most detailed map of our galaxy to date.

Ingredients

  • hot water
  • glitter glue
  • glitter
  • super glue (optional)

Directions

Mostly fill a 16 oz. glass jar with very hot water, leaving a couple inches of space at the top.

Add at least ¼ cup of glitter glue in colors of your choosing.

Add loose glitter a couple of teaspoons at a time, using as much or as little as you like! You can use a combination of fine and chunky glitter for an extended swirling effect.

Optional: Super glue the lid to the jar.

Once the water has sufficiently cooled, give the jar a gentle shake to see your galaxy swirl!

NOTE: Closely monitor children to ensure the jar doesn’t break.

pinwheel-card.png?w=1800

Pinwheel Galaxy Pinwheels

As we continue our cosmic excursion, you’ll see other galaxies sprinkled throughout space. Many are spiral galaxies, like our Milky Way and the Pinwheel Galaxy from the craft described above. (You can find more detailed instructions and the printout you’ll need here.)

But galaxies come in other varieties, too. Through Roman’s wide, deep surveys, astronomers are sure to see every type. Scientists will study the shapes and distances of billions of galaxies to help us understand dark energy — a mysterious pressure that’s speeding up the universe’s expansion. 

Supplies

  • Pinwheel Galaxy printout
  • pipe cleaner or chopsticks
  • scissors
  • popsicle stick
  • single hole puncher

Directions

Cut out the hexagonal shape for your galaxy pinwheel.

Make cuts down the white lines.

Punch holes in the white dots: six around the edges and one in the center.

Turn the paper so it’s face-down.

Thread a pipe cleaner through the center hole.

Going around the circle, fold each flap so the pipe cleaner goes through the hole.

Tie a knot in the pipe cleaner to secure the front of the pinwheel. Wrap the other side of the pipe cleaner around a popsicle stick.

universe-dough-card.png?w=1800

Universe Dough

We’re nearing the end of our voyage, having traveled so far through space and time that we can take in the whole universe! We’ve learned a lot about it, but there are still plenty of open questions. Some of its biggest components, dark energy and dark matter (invisible matter seen only via its gravitational influence), are huge mysteries Roman will explore. And since the observatory will reveal such large, deep swaths of space, who knows what new puzzles we’ll soon uncover!

  • Ingredients
  • 1 cup flour
  • ½ cup salt
  • 1 tablespoon vegetable oil
  • ½ cup hot water
  • food coloring
  • glitter

Directions

Mix flour and salt in a bowl.

Add several drops of food coloring to hot water, and stir into dry mixture along with the oil.

Add as much glitter as you like and knead it into the dough for several minutes.

Add water or flour as needed to adjust the consistency.

Still feeling crafty? Try your hand at these 3D and paper spacecraft models. If you’re eager for a more advanced space craft, check out these embroidery creations for inspiration! Or if you’re ready for a break, take a virtual tour of an interactive version of the Roman Space Telescope here.

Share

Details

Last Updated
Sep 27, 2024

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA/Don Pettit On Jan. 10, 2025, NASA astronaut Don Pettit posted two images of the Los Angeles fires from the International Space Station. Multiple destructive fires broke out in the hills of Los Angeles County in early January 2025, fueled by a dry landscape and winds that gusted up to 100 miles per hour.
      See satellite imagery of the fires.
      Image credit: NASA/Don Pettit
      View the full article
    • By NASA
      Firefly Blue Ghost Mission 1 Launch to the Moon (Official NASA Broadcast)
    • By NASA
      As part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, Firefly Aerospace’s Blue Ghost Mission One lander will carry 10 NASA science and technology instruments to the Moon’s near side. Credit: Firefly Aerospace Carrying NASA science and technology to the Moon as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, Firefly Aerospace’s Blue Ghost Mission 1 is targeting launch Wednesday, Jan. 15. The mission will lift off on a SpaceX’s Falcon 9 rocket from Launch Complex 39A at the agency’s Kennedy Space Center in Florida.
      Live launch coverage will air on NASA+ with prelaunch events starting Monday, Jan. 13. Learn how to watch NASA content through a variety of platforms, including social media. Follow all events at:
      https://www.nasa.gov/live/
      After the launch, Firefly’s Blue Ghost lander will spend approximately 45 days in transit to the Moon before landing on the lunar surface in early March. The lander will carry 10 NASA science investigations to further our understanding of the Moon’s environment and help prepare for future human missions to the lunar surface, as part of the agency’s Moon to Mars exploration approach. 
      Science investigations on this flight aim to test and demonstrate lunar subsurface drilling technology, regolith sample collection capabilities, global navigation satellite system abilities, radiation tolerant computing, and lunar dust mitigation methods. The data captured could benefit humans on Earth by providing insights into how space weather and other cosmic forces impact Earth.
      The deadline has passed for media accreditation for in-person coverage of this launch. The agency’s media accreditation policy is available online. More information about media accreditation is available by emailing: ksc-media-accreditat@mail.nasa.gov.
      Full coverage of this mission is as follows (all times Eastern):
      Monday, Jan. 13
      2:30 p.m. – Lunar science media teleconference with the following participants:
      Chris Culbert, CLPS program manager, NASA’s Johnson Space Center Maria Banks, CLPS project scientist, NASA Johnson Audio of the teleconference will stream live on the agency’s website:
      https://www.nasa.gov/live/
      Media may ask questions via phone only. For the dial-in number and passcode, please contact the Kennedy newsroom no later than 1:30 p.m. EST Jan. 13, at: ksc-newsroom@mail.nasa.gov.
      Tuesday, Jan. 14
      1 p.m. – Lunar delivery readiness media teleconference with the following participants:
      Nicola Fox, associate administrator, Science Mission Directorate at NASA Headquarters Jason Kim, CEO, Firefly Aerospace Julianna Scheiman, director, NASA science missions, SpaceX Mark Burger, launch weather officer, Cape Canaveral Space Force Station’s 45th Weather Squadron Audio of the teleconference will stream live on the agency’s website:
      https://www.nasa.gov/live/
      Media may ask questions via phone only. For the dial-in number and passcode, please contact the Kennedy newsroom no later than 12 p.m. EST on Tuesday, Jan. 14, at: ksc-newsroom@mail.nasa.gov.
      Wednesday, Jan. 15
      12:30 a.m. – Launch coverage begins on NASA+ and the agency’s website.
      1:11 a.m. – Launch
      NASA Launch Coverage
      Audio only of the media teleconferences and launch coverage will be carried on the NASA “V” circuits, which may be accessed by dialing 321-867-1220, -1240, or -7135. On launch day, the full mission broadcast can be heard on -1220 and -1240, while the countdown net only can be heard on -7135 beginning approximately one hour before the mission broadcast begins.
      On launch day, a “tech feed” of the launch without NASA TV commentary will be carried on the NASA TV media channel.
      NASA Website Launch Coverage
      Launch day coverage of the mission will be available on the NASA website. Coverage will include live streaming and blog updates beginning no earlier than 12:30 a.m. EST Jan. 15, as the countdown milestones occur. On-demand streaming video and photos of the launch will be available shortly after liftoff. For questions about countdown coverage, contact the Kennedy newsroom at 321-867-2468. Follow countdown coverage on our launch blog for updates.
      NASA Virtual Guests for Launch
      Members of the public can register to attend this launch virtually. Registrants will receive mission updates and activities by email, including curated mission resources, schedule updates, and a virtual guest passport stamp following a successful launch. Print your passport and get ready to add your stamp!
      Watch, Engage on Social Media
      Let people know you’re following the mission on X, Facebook, and Instagram by using the hashtag #Artemis. You can also stay connected by following and tagging these accounts:
      X: @NASA, @NASAKennedy, @NASAArtemis, @NASAMoon
      Facebook: NASA, NASAKennedy, NASAArtemis
      Instagram: @NASA, @NASAKennedy, @NASAArtemis
      Coverage en Español
      Did you know NASA has a Spanish section called NASA en español? Check out NASA en español on X, Instagram, Facebook, and YouTube for additional mission coverage.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo o Messod Bendayan a: antonia.jaramillobotero@nasa.gov o messod.c.bendayan@nasa.gov.
      For media inquiries relating to the launch provider, please contact SpaceX’s communications department by emailing: media@spacex.com. For media inquiries relating to the CLPS provider, Firefly Aerospace, please contact Firefly’s communication department by emailing: press@fireflyspace.com.
      For more information about the agency’s CLPS initiative, see:
      https://www.nasa.gov/clps
      -end-
      Karen Fox / Alise Fisher
      Headquarters, Washington
      301-286-6284 / 202-358-1275
      karen.c.fox@nasa.gov / alise.m.fisher@nasa.gov  
      Natalia Riusech
      Johnson Space Center, Houston
      281-483-5111
      nataila.s.riusech@nasa.gov
      Antonia Jaramillo
      Kennedy Space Center, Florida
      321-501-8425
      antonia.jaramillobotero@nasa.gov
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of SUPREME-QG: Space-borne Ultra-Precise Measurement of the Equivalence Principle Signature of Quantum GravityNASA/Selim Shahriar Selim Shahriar
      Northwestern University, Evanston
      Progress in physics has largely been driven by the development and verification of new theories that unify different fundamental forces of nature. For example, Maxwell revolutionized physics with his unified theory of electricity and magnetism, and the Standard Model of particle physics provides a consistent description of all fundamental forces (electromagnetic, strong, and weak) except for gravity. The major barrier to completing the quest for unification is that General Relativity (GR), the current theory of gravity, cannot be reconciled with QM. Theories of Quantum Gravity (TQG), which are yet untested, prescribe modifications of both GR and QM in a manner that makes them consistent with each other. Tests of TQG represent arguably the greatest challenge facing our understanding of the Universe. The most promising way to test TQG is to search for violation of the Equivalence Principle (EP), a fundamental tenet of GR which states that all objects experience the same acceleration in a gravitational field. Violation of EP is characterized by a nonzero Eotvos parameter, Eta, defined as the ratio of the relative acceleration to the mean acceleration experienced by two objects with different inertial masses in a gravitational field. EP violations at the level of Eta < 10^(-18) arise in many versions of TQG (e.g., string theory). The most precise test of the EP to date has been carried out under the space-borne MICROSCOPE experiment employing classical accelerometers, constraining the value of Eta to <1.5×10^(-15). We propose to investigate the use of a radically new method that leverages quantum entanglement to test the EP with extreme precision, at the level of Eta ~ 10^(-20), using a space-borne platform. This method is described in a recent paper by us (PRD 108, 024011, ’23). It makes use of simultaneous Schroedinger Cat (SC) state atom interferometers (AIs) with two isotopes of Rb. Consisting of N=10^6 atoms, the SC state, which is a maximally entangled quantum state generated via spin-squeezing of cold atoms in an optical cavity, acts as a single particle, in a superposition of two collective states, enhancing the sensitivity by a factor of ~root(N)=10^3. Such large-N SC states are difficult to create and have not been observed yet, let alone leveraged for precision metrology. In another recent paper, we described a novel protocol, namely the generalized echo squeezing protocol (GESP), to overcome the challenges of creating such a state (PRA 107, 032610, ’23). We will demonstrate the functionality of this method in a testbed to enable a follow-on space-borne mission capable of testing the EP at the level of Eta ~ 10^(-20). If EP violation is observed, the version of TQG that agrees most closely with the result would form the foundation for a complete theory governing the universe, including its birth: the Big Bang. A null result would force physicists to conceive an entirely new approach to addressing the irreconcilability of GR and QM, fundamentally altering the course of theoretical physics. Either outcome would represent one of the greatest developments in our quest for understanding nature. The SC-state AI (SCAI), also holds the promise of revolutionary improvements in the precision of gravitational cartography and inertial navigation, when configured for simultaneous accelerometry and rotation sensing. The sensitivity of such a sensor, for one second averaging time, would be ~0.9 femto-g for accelerometry, and ~0.5 pico-degree/hour for rotation sensing. This would represent an improvement by a factor of ~10^5 over the best conventional accelerometer, and a factor of ~10^4 over the best conventional gyroscopes. As such, the SCAI would find widespread usage in defense as well as non-defense sectors, including deep-space exploration, for inertial navigation. A space-borne SCAI would be able to carry out gravitational cartography with a resolution far greater than that achieved using the GRACE-FO satellites.
      2025 Selections
      Facebook logo @NASATechnology @NASA_Technology


      Share
      Details
      Last Updated Jan 10, 2025 EditorLoura Hall Related Terms
      NIAC Studies NASA Innovative Advanced Concepts (NIAC) Program Keep Exploring Discover More NIAC Topics
      Space Technology Mission Directorate
      NASA Innovative Advanced Concepts
      NIAC Funded Studies
      About NIAC
      View the full article
    • By NASA
      5 Min Read NASA and Italian Space Agency Test Future Lunar Navigation Technology
      The potentially record-breaking Lunar GNSS Receiver Experiment (LuGRE) payload will be the first known demonstration of GNSS signal reception on and around the lunar surface. Credits: NASA/Dave Ryan As NASA celebrates 55 years since the historic Apollo 11 crewed lunar landing, the agency also is preparing new navigation and positioning technology for the Artemis campaign, the agency’s modern lunar exploration program.
      A technology demonstration helping pave the way for these developments is the Lunar GNSS Receiver Experiment (LuGRE) payload, a joint effort between NASA and the Italian Space Agency to demonstrate the viability of using existing GNSS (Global Navigation Satellite System) signals for positioning, navigation, and timing on the Moon.
      During its voyage on an upcoming delivery to the Moon as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative, LuGRE would demonstrate acquiring and tracking signals from both the U.S. GPS and European Union Galileo GNSS constellations during transit to the Moon, during lunar orbit, and finally for up to two weeks on the lunar surface itself.
      The Lunar GNSS Receiver Experiment (LuGRE) will investigate whether signals from two Global Navigation Satellite System (GNSS) constellations, the U.S. Global Positioning System (GPS) and European Union’s Galileo, can be tracked at the Moon and used for positioning, navigation, and timing (PNT). The LuGRE payload is one of the first demonstrations of GNSS signal reception and navigation on and around the lunar surface, an important milestone for how lunar missions will access navigation and positioning technology. If successful, LuGRE would demonstrate that spacecraft can use signals from existing GNSS satellites at lunar distances, reducing their reliance on ground-based stations on the Earth for lunar navigation.
      Today, GNSS constellations support essential services like navigation, banking, power grid synchronization, cellular networks, and telecommunications. Near-Earth space missions use these signals in flight to determine critical operational information like location, velocity, and time.
      NASA and the Italian Space Agency want to expand the boundaries of GNSS use cases. In 2019, the Magnetospheric Multiscale (MMS) mission broke the world record for farthest GPS signal acquisition 116,300 miles from the Earth’s surface — nearly half of the 238,900 miles between Earth and the Moon. Now, LuGRE could double that distance.
      “GPS makes our lives safer and more viable here on Earth,” said Kevin Coggins, NASA deputy associate administrator and SCaN (Space Communications and Navigation) Program manager at NASA Headquarters in Washington. “As we seek to extend humanity beyond our home planet, LuGRE should confirm that this extraordinary technology can do the same for us on the Moon.”
      NASA, Firefly, Qascom, and Italian Space Agency team members examine LuGRE hardware in a clean room.Firefly Aerospace Reliable space communication and navigation systems play a vital role in all NASA missions, providing crucial connections from space to Earth for crewed and uncrewed missions alike. Using a blend of government and commercial assets, NASA’s Near Space and Deep Space Networks support science, technology demonstrations, and human spaceflight missions across the solar system.
      “This mission is more than a technological milestone,” said Joel Parker, policy lead for positioning, navigation, and timing at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We want to enable more and better missions to the Moon for the benefit of everyone, and we want to do it together with our international partners.”
      This mission is more than a technological milestone. We want to enable more and better missions to the Moon for the benefit of everyone…
      JOEL PARKER
      PNT Policy Lead at NASA's Goddard Space Flight Center
      The data-gathering LuGRE payload combines NASA-led systems engineering and mission management with receiver software and hardware developed by the Italian Space Agency and their industry partner Qascom — the first Italian-built hardware to operate on the lunar surface.
      Any data LuGRE collects is intended to open the door for use of GNSS to all lunar missions, not just those by NASA or the Italian Space Agency. Approximately six months after LuGRE completes its operations, the agencies will release its mission data to broaden public and commercial access to lunar GNSS research.
      Firefly Aerospace’s Blue Ghost Mission One lander is carrying 10 NASA science and technology instruments to the Moon as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign.Firefly Aerospace “A project like LuGRE isn’t about NASA alone,” said NASA Goddard navigation and mission design engineer Lauren Konitzer. “It’s something we’re doing for the benefit of humanity. We’re working to prove that lunar GNSS can work, and we’re sharing our discoveries with the world.”
      The LuGRE payload is one of 10 NASA-funded science experiments launching to the lunar surface on this delivery through NASA’s CLPS initiative. Through CLPS, NASA works with American companies to provide delivery and quantity contracts for commercial deliveries to further lunar exploration and the development of a sustainable lunar economy. As of 2024, the agency has 14 private partners on contract for current and future CLPS missions.
      Demonstrations like LuGRE could lay the groundwork for GNSS-based navigation systems on the lunar surface. Bridging these existing systems with emerging lunar-specific navigation solutions has the potential to define how all spacecraft navigate lunar terrain in the Artemis era.
      Artist’s concept rendering of LuGRE aboard the Blue Ghost lunar lander receiving signals from Earth’s GNSS constellations.NASA/Dave Ryan The payload is a collaborative effort between NASA’s Goddard Space Flight Center and the Italian Space Agency. Funding and oversight for the LuGRE payload comes from the agency’s SCaN Program office. It was chosen by NASA as one of 10 funded research and technology demonstrations for delivery to the lunar surface by Firefly Aerospace Inc, a flight under the agency’s CLPS initiative.
      About the Author
      Korine Powers
      Senior Writer and Education LeadKorine Powers, Ph.D. is a writer for NASA's Space Communications and Navigation (SCaN) program office and covers emerging technologies, commercialization efforts, education and outreach, exploration activities, and more.
      Share
      Details
      Last Updated Jan 09, 2025 EditorGoddard Digital TeamContactKorine Powerskorine.powers@nasa.govLocationNASA Goddard Space Flight Center Related Terms
      Goddard Space Flight Center Artemis Blue Ghost (lander) Commercial Lunar Payload Services (CLPS) Communicating and Navigating with Missions Earth's Moon Near Space Network Space Communications & Navigation Program View the full article
  • Check out these Videos

×
×
  • Create New...