Members Can Post Anonymously On This Site
Kyle Helson Finds EXCITE-ment in Exoplanet Exploration
-
Similar Topics
-
By NASA
Explore Webb Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Webb’s First Images Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 6 Min Read Frigid Exoplanet in Strange Orbit Imaged by NASA’s Webb
This image of exoplanet 14 Herculis c was taken by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera). A star symbol marks the location of the host star 14 Herculis, whose light has been blocked by a coronagraph on NIRCam (shown here as a dark circle outlined in white). Credits:
NASA, ESA, CSA, STScI, W. Balmer (JHU), D. Bardalez Gagliuffi (Amherst College) A planetary system described as abnormal, chaotic, and strange by researchers has come into clearer view with NASA’s James Webb Space Telescope. Using Webb’s NIRCam (Near-Infrared Camera), researchers have successfully imaged one of two known planets surrounding the star 14 Herculis, located 60 light-years away from Earth in our own Milky Way galaxy.
The exoplanet, 14 Herculis c, is one of the coldest imaged to date. While there are nearly 6,000 exoplanets that have been discovered, only a small number of those have been directly imaged, most of those being very hot (think hundreds or even thousands of degrees Fahrenheit). The new data suggests 14 Herculis c, which weighs about 7 times the planet Jupiter, is as cool as 26 degrees Fahrenheit (minus 3 degrees Celsius).
Image: 14 Herculis c (NIRCam)
This image of exoplanet 14 Herculis c was taken by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera). A star symbol marks the location of the host star 14 Herculis, whose light has been blocked by a coronagraph on NIRCam (shown here as a dark circle outlined in white). NASA, ESA, CSA, STScI, W. Balmer (JHU), D. Bardalez Gagliuffi (Amherst College) The team’s results covering 14 Herculis c have been submitted to The Astrophysical Journal Letters and were presented in a press conference Tuesday at the 246th meeting of the American Astronomical Society in Anchorage, Alaska.
“The colder an exoplanet, the harder it is to image, so this is a totally new regime of study that Webb has unlocked with its extreme sensitivity in the infrared,” said William Balmer, co-first author of the new paper and graduate student at Johns Hopkins University. “We are now able to add to the catalog of not just hot, young exoplanets imaged, but older exoplanets that are far colder than we’ve directly seen before Webb.”
Webb’s image of 14 Herculis c also provides insights into a planetary system unlike most others studied in detail with Webb and other ground- and space-based `observatories. The central star, 14 Herculis, is almost Sun-like – it is similar in age and temperature to our own Sun, but a little less massive and cooler.
There are two planets in this system – 14 Herculis b is closer to the star, and covered by the coronagraphic mask in the Webb image. These planets don’t orbit each other on the same plane like our solar system. Instead, they cross each other like an ‘X’, with the star being at the center. That is, the orbital planes of the two planets are inclined relative to one another at an angle of about 40 degrees. The planets tug and pull at one another as they orbit the star.
This is the first time an image has ever been snapped of an exoplanet in such a mis-aligned system.
Scientists are working on several theories for just how the planets in this system got so “off track.” One of the leading concepts is that the planets scattered after a third planet was violently ejected from the system early in its formation.
“The early evolution of our own solar system was dominated by the movement and pull of our own gas giants,” added Balmer. “They threw around asteroids and rearranged other planets. Here, we are seeing the aftermath of a more violent planetary crime scene. It reminds us that something similar could have happened to our own solar system, and that the outcomes for small planets like Earth are often dictated by much larger forces.”
Understanding the Planet’s Characteristics With Webb
Webb’s new data is giving researchers further insights into not just the temperature of 14 Herculis c, but other details about the planet’s orbit and atmosphere.
Findings indicate the planet orbits around 1.4 billion miles from the host star in a highly elliptical, or football-shaped orbit, closer in than previous estimates. This is around 15 times farther from the Sun than Earth. On average, this would put 14 Herculis c between Saturn and Uranus in our solar system.
The planet’s brightness at 4.4 microns measured using Webb’s coronagraph, combined with the known mass of the planet and age of the system, hints at some complex atmospheric dynamics at play.
“If a planet of a certain mass formed 4 billion years ago, then cooled over time because it doesn’t have a source of energy keeping it warm, we can predict how hot it should be today,” said Daniella C. Bardalez Gagliuffi of Amherst College, co-first author on the paper with Balmer. “Added information, like the perceived brightness in direct imaging, would in theory support this estimate of the planet’s temperature.”
However, what researchers expect isn’t always reflected in the results. With 14 Herculis c, the brightness at this wavelength is fainter than expected for an object of this mass and age. The research team can explain this discrepancy, though. It’s called carbon disequilibrium chemistry, something often seen in brown dwarfs.
“This exoplanet is so cold, the best comparisons we have that are well-studied are the coldest brown dwarfs,” Bardalez Gagliuffi explained. “In those objects, like with 14 Herculis c, we see carbon dioxide and carbon monoxide existing at temperatures where we should see methane. This is explained by churning in the atmosphere. Molecules made at warmer temperatures in the lower atmosphere are brought to the cold, upper atmosphere very quickly.”
Researchers hope Webb’s image of 14 Herculis c is just the beginning of a new phase of investigation into this strange system.
While the small dot of light obtained by Webb contains a plethora of information, future spectroscopic studies of 14 Herculis could better constrain the atmospheric properties of this interesting planet and help researchers understand the dynamics and formation pathways of the system.
The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
To learn more about Webb, visit:
https://science.nasa.gov/webb
Downloads
Click any image to open a larger version.
View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
Media Contacts
Laura Betz – laura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Hannah Braun – hbraun@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Christine Pulliam – cpulliam@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Related Information
Video: Eclipse/Coronagraph Animation
Webb Blog: How Webb’s Coronagraphs Reveal Exoplanets in the Infrared
Read more about Webb’s Impact on Exoplanet Research
More Webb News
More Webb Images
Webb Science Themes
Webb Mission Page
Related For Kids
What is the Webb Telescope?
SpacePlace for Kids
En Español
Ciencia de la NASA
NASA en español
Space Place para niños
Keep Exploring Related Topics
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Exoplanets
Exoplanet Stories
Universe
Share
Details
Last Updated Jun 10, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
Exoplanets Astrophysics Goddard Space Flight Center James Webb Space Telescope (JWST) Science & Research Studying Exoplanets The Universe View the full article
-
By NASA
X-ray: NASA/CXC/CfA/Stroe, A. et al.; Optical: PanSTARRS; Radio: ASTRON/LOFAR; Image Processing: NASA/CXC/SAO/N. Wolk New observations from NASA’s Chandra X-ray Observatory and other telescopes have captured a rare cosmic event: two galaxy clusters have collided and are now poised to head back for another swipe at each other.
Galaxy clusters are some of the largest structures in the Universe. Held together by gravity, they are monster-sized collections of hundreds or thousands of individual galaxies, massive amounts of superheated gas, and invisible dark matter.
The galaxy cluster PSZ2 G181.06+48.47 (PSZ2 G181 for short) is about 2.8 billion light-years from Earth. Previously, radio observations from the LOw Frequency ARray (LOFAR), an antenna network in the Netherlands, spotted parentheses-shaped structures on the outside of the system. In this new composite image, X-rays from Chandra (purple) and ESA’s XMM-Newton (blue) have been combined with LOFAR data (red) and an optical image from Pan-STARRs of the stars in the field of view.
These structures are probably shock fronts — similar to those created by jets that have broken the sound barrier — likely caused by disruption of gas from the initial collision about a billion years ago. Since the collision they have continued traveling outwards and are currently separated by about 11 million light-years, the largest separation of these kinds of structures that astronomers have ever seen.
Colliding galaxy clusters PSZ2 G181.06+48.47 (Labeled).X-ray: NASA/CXC/CfA/Stroe, A. et al.; Optical: PanSTARRS; Radio: ASTRON/LOFAR; Image Processing: NASA/CXC/SAO/N. Wolk Now, data from NASA’s Chandra and ESA’s XMM-Newton is providing evidence that PSZ2 G181 is poised for another collision. Having a first pass at ramming each other, the two clusters have slowed down and begun heading back toward a second crash.
Astronomers made a detailed study of the X-ray observations of this collision site and found three shock fronts. These are aligned with the axis of the collision, and the researchers think they are early signs of the second, oncoming crash.
The researchers are still trying to determine how much mass each of the colliding clusters contains. Regardless, the total mass of the system is less than others where galaxy clusters have collided. This makes PSZ2 G181 an unusual case of a lower-mass system involved in the rare event of colliding galaxy clusters.
A paper describing these results appears in a recent issue of The Astrophysical Journal (ApJ) and is led by Andra Stroe from the Center for Astrophysics | Harvard & Smithsonian (CfA) and collaborators. It is part of a series of three papers in ApJ. The second paper is led by Kamlesh Rajpurohit, also of CfA, and the third paper is led by Eunmo Ahn, from Yonsei University in the Republic of Korea.
NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
Read more from NASA’s Chandra X-ray Observatory Learn more about the Chandra X-ray Observatory and its mission here:
https://www.nasa.gov/chandra
https://chandra.si.edu
Visual Description
In this release, a composite image illustrates a dramatic cosmic story unfolding 2.8 billion light years from Earth. Presented both with and without labels, the image details the fallout when two galaxy clusters collide.
At the center of the image are the colliding galaxy clusters, which together are known as PSZ2 G181. This combined cluster somewhat resembles an irregular violet peanut shell, with bulbous ends linked by a tapered middle. Inside each bulbous end are several glowing dots; some of the galaxies within the clusters. The violet peanut shape is tilted at a slight angle, surrounded by a blue haze of X-ray gas.
Far from the bulbous ends, at our upper left and lower right, are two blotchy, thick red lines. These are probably shock fronts, similar to those created by jets that have broken the sound barrier. Bracketing the combined galaxy cluster, these shock fronts were caused by the initial collision about a billion years ago. They are currently separated by 11 million light-years.
New data from the Chandra and XMM-Newton observatories suggests that PSZ2 G181 is poised for another powerful cosmic event. Having already taken one swipe at each other, the two clusters within are once again on a collision course.
News Media Contact
Megan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998
mwatzke@cfa.harvard.edu
Lane Figueroa
Marshall Space Flight Center, Huntsville, Alabama
256-544-0034
lane.e.figueroa@nasa.gov
Share
Details
Last Updated Jun 04, 2025 Related Terms
Chandra X-Ray Observatory Galaxies Galaxy clusters Marshall Astrophysics Marshall Space Flight Center The Universe
Explore More
4 min read Core Components for NASA’s Roman Space Telescope Pass Major Shake Test
Article 1 hour ago 5 min read NASA’s Webb Rounds Out Picture of Sombrero Galaxy’s Disk
After capturing an image of the iconic Sombrero galaxy at mid-infrared wavelengths in late 2024,…
Article 1 day ago 2 min read Hubble Filters a Barred Spiral
This NASA/ESA Hubble Space Telescope image features a luminous tangle of stars and dust called…
Article 1 day ago Keep Exploring Discover More Topics From NASA
Universe
IXPE
Stars
Astronomers estimate that the universe could contain up to one septillion stars – that’s a one followed by 24 zeros.…
Solar System
View the full article
-
By NASA
X-ray: NASA/CXC/ICRAR, Curtin Univ./Z. Wang et al.; Infrared: NASA/JPL/CalTech/IPAC; Radio: SARAO/MeerKAT; Image processing: NASA/CXC/SAO/N. Wolk Scientists have discovered a star behaving like no other seen before, giving fresh clues about the origin of a new class of mysterious objects.
As described in our press release, a team of astronomers combined data from NASA’s Chandra X-ray Observatory and the SKA [Square Kilometer Array] Pathfinder (ASKAP) radio telescope on Wajarri Country in Australia to study the antics of the discovered object, known as ASKAP J1832−0911 (ASKAP J1832 for short).
ASKAP J1832 belongs to a class of objects called “long period radio transients” discovered in 2022 that vary in radio wave intensity in a regular way over tens of minutes. This is thousands of times longer than the length of the repeated variations seen in pulsars, which are rapidly spinning neutron stars that have repeated variations multiple times a second. ASKAP J1832 cycles in radio wave intensity every 44 minutes, placing it into this category of long period radio transients.
Using Chandra, the team discovered that ASKAP J1832 is also regularly varying in X-rays every 44 minutes. This is the first time that such an X-ray signal has been found in a long period radio transient.
In this composite image, X-rays from Chandra (blue) have been combined with infrared data from NASA’s Spitzer Space Telescope (cyan, light blue, teal and orange), and radio from LOFAR (red). An inset shows a more detailed view of the immediate area around this unusual object in X-ray and radio light.
A wide field image of ASKAP J1832 in X-ray, radio, and infrared light.X-ray: NASA/CXC/ICRAR, Curtin Univ./Z. Wang et al.; Infrared: NASA/JPL/CalTech/IPAC; Radio: SARAO/MeerKAT; Image processing: NASA/CXC/SAO/N. Wolk Using Chandra and the SKA Pathfinder, a team of astronomers found that ASKAP J1832 also dropped off in X-rays and radio waves dramatically over the course of six months. This combination of the 44-minute cycle in X-rays and radio waves in addition to the months-long changes is unlike anything astronomers have seen in the Milky Way galaxy.
A close-up image of ASKAP J1832 in X-ray and radio light.X-ray: NASA/CXC/ICRAR, Curtin Univ./Z. Wang et al.; Radio: SARAO/MeerKAT; Image processing: NASA/CXC/SAO/N. Wolk The research team argues that ASKAP J1832 is unlikely to be a pulsar or a neutron star pulling material from a companion star because its properties do not match the typical intensities of radio and X-ray signals of those objects. Some of ASKAP J1832’s properties could be explained by a neutron star with an extremely strong magnetic field, called a magnetar, with an age of more than half a million years. However, other features of ASKAP J1832 — such as its bright and variable radio emission — are difficult to explain for such a relatively old magnetar.
On the sky, ASKAP J1832 appears to lie within a supernova remnant, the remains of an exploded star, which often contain a neutron star formed by the supernova. However, the research team determined that the proximity is probably a coincidence and two are not associated with each other, encouraging them to consider the possibility that ASKAP J1832 does not contain a neutron star. They concluded that an isolated white dwarf does not explain the data but that a white dwarf star with a companion star might. However, it would require the strongest magnetic field ever known for a white dwarf in our galaxy.
A paper by Ziteng Wang (Curtin University in Australia) and collaborators describing these results appears in the journal Nature. Another team led by Di Li from Tsinghua University in China independently discovered this source using the DAocheng Radio Telescope and submitted their paper to the arXiv on the same day as the team led by Dr Wang. They did not report the X-ray behavior described here.
NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
Read more from NASA’s Chandra X-ray Observatory Learn more about the Chandra X-ray Observatory and its mission here:
https://www.nasa.gov/chandra
https://chandra.si.edu
Visual Description:
This release features two composite images of a mysterious object, possibly an unusual neutron star or white dwarf, residing near the edge of a supernova remnant. The object, known as ASKAP J1832, has been intriguing astronomers from the Chandra X-ray Observatory and Square Kilometre Array Pathfinder radio telescope with its antics and bizarre behavior.
Astronomers have discovered that ASKAP J1832 cycles in radio wave intensity every 44 minutes. This is thousands of times longer than pulsars, which are rapidly spinning neutron stars that have repeated variations multiple times a second. Using Chandra, the team discovered that the object is also regularly varying in X-rays every 44 minutes. This is the first time such an X-ray signal has been found in a long period radio transient like ASKAP J1832.
In the primary composite image of this release, the curious object is shown in the context of the supernova remnant and nearby gas clouds. Radio data is red and and X-ray sources seen with Chandra are in dark blue. The supernova remnant is the large, wispy, red oval ring occupying the lower right of the image. The curious object sits inside this ring, to our right of center; a tiny purple speck in a sea of colorful specks. The gas cloud shows infrared data from NASA’s Spitzer Space Telescope and resembles a mottled green, teal blue, and golden orange cloud occupying our upper left half of the square image.
The second, close-up image shows a view of the immediate area around ASKAP J1832. In this composite image, infrared data from Spitzer has been removed, eliminating the mottled cloud and most of the colorful background specks. Here, near the inside edge of the hazy red ring, the curious object resembles a bright white dot with a hot pink outer edge, set against the blackness of space. Upon close inspection, the hot pink outer edge is revealed to have three faint spikes emanating from the surface.
The primary and close-up images are presented both unadorned, and with labels, including fine white circles identifying ASKAP J1832.
News Media Contact
Megan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998
mwatzke@cfa.harvard.edu
Lane Figueroa
Marshall Space Flight Center, Huntsville, Alabama
256-544-0034
lane.e.figueroa@nasa.gov
Share
Details
Last Updated May 28, 2025 EditorLee Mohon Related Terms
Chandra X-Ray Observatory Marshall Astrophysics Marshall Space Flight Center Neutron Stars Pulsars Stars The Universe
Explore More
2 min read Hubble Spies a Spiral So Inclined
The stately and inclined spiral galaxy NGC 3511 is the subject of this NASA/ESA Hubble…
Article 5 days ago 2 min read How Big is Space? We Asked a NASA Expert: Episode: 61
Article 7 days ago 3 min read Discovery Alert: A Possible Perpendicular Planet
The Discovery A newly discovered planetary system, informally known as 2M1510, is among the strangest…
Article 1 week ago Keep Exploring Discover More Topics From NASA
Universe
IXPE
Stars
Astronomers estimate that the universe could contain up to one septillion stars – that’s a one followed by 24 zeros.…
Solar System
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of the Breathing Beyond Earth concept.NASA/Alvaro Romero-Calvo Alvaro Romero-Calvo
Georgia Tech Research Corporation
The reliable and efficient operation of spacecraft life support systems is challenged in microgravity by the near absence of buoyancy. This impacts the electrolytic production of oxygen and hydrogen from water by forcing the adoption of complex multiphase flow management technologies. Still, water splitting plays an essential role in human spaceflight, closing the regenerative environmental control and life support loop and connecting the water and atmosphere management subsystems. Existing oxygen generation systems, although successful for short-term crewed missions, lack the reliability and efficiency required for long-duration spaceflight and, in particular, for Mars exploration.
During our Phase I NIAC effort, we demonstrated the basic feasibility of a novel water-splitting architecture that leverages contactless magnetohydrodynamic (MHD) forces to produce and separate oxygen and hydrogen gas bubbles in microgravity. The system, known as the Magnetohydrodynamic Oxygen Generation Assembly (MOGA), avoids the use of forced water recirculation loops or moving parts such as pumps or centrifuges for phase separation. This fundamental paradigm shift results in multiple operational advantages with respect to the state-of-the-art: increased robustness to over- and under-voltages in the cell stack, minimal risk of electrolyte leaching, wider operational temperature and humidity levels, simpler transient operation, increased material durability, enhanced system stability during dormant periods, modest water purity requirements, reduced microbial growth, and better component-level swap-ability, all of which result in an exceptionally robust system. Overall, these architectural features lead to a 32.9% mass reduction and 20.4% astronaut maintenance time savings with respect to the Oxygen Generation Assembly at the ISS for a four-crew Mars transfer, making the system ideally suited for long-duration missions. In Phase II, we seek to answer some of the key remaining unknowns surrounding this architecture, particularly regarding (i) the long-term electrochemical and multiphase flow behavior of the system in microgravity and its impact on power consumption and liquid interface stability, (ii) the transient operational modes of the MHD drive during start-up, shutdown, and dormancy, and (iii) architectural improvements for manufacturability and ease of repair. Toward that end, we will leverage our combined expertise in microgravity research by partnering with the ZARM Institute in Bremen and the German Aerospace Center to fly, free of charge to NASA, a large-scale magnetohydrodynamic drive system and demonstrate critical processes and components. An external review board composed of industry experts will assess the evolution of the project and inform commercial infusion. This effort will result in a TRL-4 system that will also benefit additional technologies of interest to NASA and the general public, such as water-based SmallSat propulsion and in-situ resource utilization.
2025 Selections
Facebook logo @NASATechnology @NASA_Technology
Share
Details
Last Updated May 27, 2025 EditorLoura Hall Related Terms
NIAC Studies NASA Innovative Advanced Concepts (NIAC) Program Keep Exploring Discover More NIAC Topics
Space Technology Mission Directorate
NASA Innovative Advanced Concepts
NIAC Funded Studies
About NIAC
View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of Photophoretic Propulsion Enabling Mesosphere Exploration concept.NASA/Igor Bargatin Igor Bargatin
University of Pennsylvania
We propose to use the photophoretic levitation and propulsion mechanism to create no-moving-parts flying vehicles that can be used to explore Earth’s upper atmosphere. The photophoretic force arises when a solid is heated relative to the ambient gas through illumination, inducing momentum exchange between the solid and the gas. The force creates lift in structures that absorb light on the bottom yet stay cool on the top, and we engineered our plate mechanical metamaterials to maximize this lift force and payload. The levitation and payload capabilities of our plates typically peak at ambient pressures in the 0.1-1000 Pa range, ideal for applications in Earth’s mesosphere and Mars’s low gravity and thin atmosphere. For example, in the Earth’s mesosphere (i.e., at altitudes from ~50 to ~80 km), the air is too thin for conventional airplanes or balloons but too thick for satellites, such that measurements can be performed for only a few minutes at a time during the short flight of a research rocket. However, the range of ambient pressures in the mesosphere (1-100 Pa) is nearly optimal for our plates’ payload capabilities. Phase 2 of the proposal focuses on the scalable fabrication of Knudsen pump structures that will enable missions with kg-scale payloads in the mesosphere as well as trajectory control with 1 m/s velocity control in existing stratospheric balloon vehicles.
2025 Selections
Facebook logo @NASATechnology @NASA_Technology
Share
Details
Last Updated May 27, 2025 EditorLoura Hall Related Terms
NASA Innovative Advanced Concepts (NIAC) Program NIAC Studies Keep Exploring Discover More NIAC Topics
Space Technology Mission Directorate
NASA Innovative Advanced Concepts
NIAC Funded Studies
About NIAC
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.