Jump to content

Kyle Helson Finds EXCITE-ment in Exoplanet Exploration


Recommended Posts

  • Publishers
Posted

Almost a decade ago, then-grad student Kyle Helson contributed to early paperwork for NASA’s EXCITE mission. As a scientist at Goddard, Helson helped make this balloon-based telescope a reality: EXCITE launched successfully on Aug. 31.

Name: Kyle Helson
Title: Assistant Research Scientist
Organization: Observational Cosmology Lab (Code 665), via UMBC and the GESTAR II cooperative agreement with NASA Goddard

Kyle Helson stands in front of large grey C-17 airplane with "U.S. Airforce" in large black letters on the side. Kyle and the plane are on a snow and ice-covered ground. He wears a red coat with black pants. There are seven people working in the background.
Dr. Kyle Helson is an assistant research scientist at NASA’s Goddard Space Flight Center in Greenbelt, Md.
Photo credit: Dr. Amy Bender

How did you know you wanted to work at NASA Goddard?

When I was finishing my physics Ph.D. at Brown University in 2016, I was talking to Ed Wollack and Dave Chuss at Goddard about the NASA postdoc program, and they suggested I apply. Luckily, I got the postdoc fellowship to come here to Goddard to work on cosmic microwave background detector testing and other related research.

I don’t think I would have realized or been interested in coming here had I not had that NASA Space Technology Research Fellowship when I was in grad school and gotten the opportunity to spend some time here and work with Ed and Dave.

What is the name of your team that you’re working with right now?

One of the projects I work on is the Exoplanet Climate Infrared TELescope (EXCITE). EXCITE is a scientific balloon-borne telescope that is designed to measure the spectra of hot, Jupiter-like exoplanet atmospheres in near-infrared light.

What is your role for that?

I do a little bit of everything. During grad school, I worked on the first few iterations of the proposal for EXCITE back in 2015 and 2016.

Over the past few years here at Goddard, I’ve been responsible for parts of a lot of the different subsystems like the cryogenic receiver, the gondola, the electronics, and integration and testing of the whole payload.

Last year, we went to Fort Sumner, New Mexico, for an engineering flight. Unfortunately, we were not able to fly for weather reasons. We went back last month, and I was again part of the field deployment team. We take the whole instrument, break it down, carefully ship it all out to New Mexico, put it back together, test it, and get it ready for a flight.

Six people wearing hard hats and yellow safety vests stand in front of a large spacecraft on a crane with large wheels on either side.
Kyle Helson (far right) and part of the EXCITE team stand in front of EXCITE Fort Sumner, New Mexico in Oct. 2023. EXCITE successfully launched on Aug. 31, 2024.
Photo credit: Annalies Kleyheeg

What is most interesting to you about your role here at Goddard?

What I like about working on a project like EXCITE is that we get to kind of do a little bit of everything.

We’ve been able to see the experiment from concept and design to actually getting built, tested and hopefully flown and then subsequent data analysis after the flight. What I think is really fun is being able be with an experiment for the entire life cycle.

How do you help support Goddard’s mission?

We’re studying exoplanets, which definitely fits within the scientific mission of Goddard. We’re also a collaboration between Goddard other academic institutions, like Arizona State, like Brown University, Cornell, and several other places, and so we’re also members of the larger scientific research community beyond NASA.

We also have a number of graduate students working on EXCITE. Ballooning is a good platform for training students and young researchers to learn how to build and design instruments, do data analysis, etc. One of the missions of NASA and Goddard is to train early career scientists like graduate students and post docs, and balloons provide a good platform for that as well.

Balloon missions like EXCITE also provide a good platform for technology advancement and demonstration in preparation for future satellite missions.

How did you know cosmology was what you wanted to pursue?

When I was a kid, I loved space. I wanted to be an astronaut when I was a kid. I even went to space camp.

The first time I ever got to see physics was a middle-school science class. That was the first time we ever learned physics or astronomy that was deeper than just identifying planets or constellations. We started to learn how we could use math to measure or predict experiments.

When I was in college, I remember talking to my undergraduate academic adviser, Glenn Starkman, and talking about what research I might like to do over the summer between sophomore and junior year of college. I wasn’t really sure what I wanted to do or what I was interested in, and he suggested I talk to some of the professors doing astrophysics and cosmology research and see if they had space for me in their lab.

I ended up finding a great opportunity working in a research lab in college — so it was working in the physics department in Case Western.
That’s where I first started learning about computer-aided design (CAD), and designing things in CAD, and that’s where I first learned how things get made in a machine shop, like on a mill, or a lathe. These skills have come in handy ever since, because I do a lot of design work in the lab. And I was lucky growing up that my dad was really hands-on and liked to fix things and build things and he taught me a lot of those skills as well.

A young Kyle Helson sits in front of a control panel wearing a headset at space camp.
“When I was a kid, I loved space,” said Kyle Helson. “I wanted to be an astronaut when I was a kid. I even went to space camp.”
Photo courtesy of Kyle Helson

Who has influenced you in your life?

My dad had a big influence. I think all the different people I’ve had the opportunity to learn from and work with who have been mentors along the way. My research advisers, professor John Ruhl in college, professor Greg Tucker in grad school, and Dr. Ed Wollack as a postdoc have all been very influential. Additionally, I have had the opportunity to work with a lot of very good post docs and research scientists during my career, Dr. Asad Aboobaker, Dr. Britt Reichborn-Kjennerud, Dr. Michele Limon, among others.

Throughout a career, there are tons of other people on the way from whom you pick up little things here and there that stick with you. You look back and you realize five years later you still do this one thing a certain way because someone helped you and taught you this skill or technique.

Where is a place you’d like to travel to?

Since I was lucky enough to go to Antarctica in graduate school, I figured that is the hardest continent to travel to, so now I have a mission to go to every continent. I’ve been to North America, I’ve been to South America, I’ve been to Asia, Europe, and Australia and New Zealand, but I’ve never been to Africa.

Four men on racing bikes during a keirin race on a track. They are in a single file line behind a man on a motorized bike wearing a blue helmet.
Kyle Helson (second from left) races the keirin at the Valley Preferred Cycling Center in Breinigsville, PA.
Photo Credit Dr. Vishrut Garg

What are your hobbies, or what do you enjoy doing?

I’m a competitive track cyclist. I started racing bikes in collegiate racing as a grad student at Brown. Many summers I’ve spent many weekends driving and flying all over the U.S. to race in the biggest track cycling events in the country.

What would be your three-word-memoir?

Curious, compassionate, cat-dad.

By Tayler Gilmore
NASA’s Goddard Space Flight Center in Greenbelt, Md

A banner graphic with a group of people smiling and the text "Conversations with Goddard" on the right. The people represent many genders, ethnicities, and ages, and all pose in front of a soft blue background image of space and stars.

Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.

Share

Details

Last Updated
Sep 10, 2024
Editor
Madison Olson
Contact
Location
Goddard Space Flight Center

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Lisa Pace knows a marathon when she sees one. An avid runner, she has participated in five marathons and more than 50 half marathons. Though she prefers to move quickly, she also knows the value of taking her time. “I solve most of my problems while running – or realize those problems aren’t worth worrying about,” she said.

      She has learned to take a similar approach to her work at NASA’s Johnson Space Center in Houston. “Earlier in my career, I raced to get things done and felt the need to do as much as possible on my own,” she said. “Over time, I’ve learned to trust my team and pause to give others an opportunity to contribute. There are times when quick action is needed, but it is often a marathon, not a sprint.”

      Official portrait of Lisa Pace.NASA/Josh Valcarcel Pace is chief of the Exploration Development Integration Division within the Exploration Architecture, Integration, and Science Directorate at Johnson. In that role, she leads a team of roughly 120 civil servants and contractors in providing mission-level system engineering and integration services that bring different architecture elements together to achieve the agency’s goals. Today that team supports Artemis missions, NASA’s Commercial Lunar Payload Services initiative and other areas as needed.

      Lisa Pace, seated at the head of the table, leads an Exploration Development Integration Division team meeting at NASA’s Johnson Space Center in Houston. NASA/James Blair “The Artemis missions come together through multiple programs and projects,” Pace explained. “We stitch them together to ensure the end-to-end mission meets its intended requirements. That includes verifying those requirements before flight and ensuring agreements between programs are honored and conflicts resolved.” The division also manages mission-level review and flight readiness processes from planning through execution, up to the final certification of flight readiness.

      Leading the division through the planning, launch, and landing of Artemis I was a career highlight for Pace, though she feels fortunate to have worked on many great projects during her time with NASA. “My coolest and most rewarding project involved designing and deploying an orbital debris tracking telescope on Ascension Island about 10 years ago,” she said. “The engineers, scientists, and military personnel I got to work and travel with on that beautiful island is tough to top!”  

      Pace says luck and great timing led her to NASA. Engineering jobs were plentiful when she graduated from Virginia Tech in 2000, and she quickly received an offer from Lockheed Martin to become a facility engineer in Johnson’s Astromaterials Research and Exploration Science Division, or ARES. “I thought working in the building where they keep the Moon rocks would be cool – and it was! Twenty-five years later, I’m still here,” Pace said.

      During that time, she has learned a lot about problem-solving and team building. “I often find that when we disagree over the ‘right’ way to do something, there is no one right answer – it just depends on your perspective,” she said. “I take the time to listen to people, understand their side, and build relationships to find common ground.”

      Lisa Pace, right, participates in a holiday competition hosted by her division.Image courtesy of Lisa Pace She also emphasizes the importance of getting to know your colleagues. “Relationships are everything,” she said. “They make the work so much more meaningful. I carry that lesson over to my personal life and value my time with family and friends outside of work.”

      Investing time in relationships has given Pace another unexpected skill – that of matchmaker. “I’m responsible for setting up five couples who are now married, and have six kids between them,” she said, adding that she knew one couple from Johnson.

      She hopes that strong relationships transfer to the Artemis Generation. “I hope to pass on a strong NASA brand and the family culture that I’ve been fortunate to have, working here for the last 25 years.”
      Explore More
      3 min read Meet Rob Navias: Public Affairs Officer and Mission Commentator  
      Article 5 days ago 5 min read Heather Cowardin Safeguards the Future of Space Exploration  
      Article 1 week ago 5 min read Driven by a Dream: Farah Al Fulfulee’s Quest to Reach the Stars
      Article 2 weeks ago View the full article
    • By NASA
      Explore This SectionScience Europa Clipper Buoyant Rover for Under Ice… Europa Clipper Home MissionOverview Facts History Timeline ScienceGoals Team SpacecraftMeet Europa Clipper Instruments Assembly Vault Plate Message in a Bottle NewsNews & Features Blog Newsroom Replay the Launch MultimediaFeatured Multimedia Resources About EuropaWhy Europa? Europa Up Close Ingredients for Life Evidence for an Ocean   To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Researchers at NASA’s Jet Propulsion Laboratory are developing the Buoyant Rover for Under-Ice Exploration, a technology that could one day explore oceans under the ice layers of planetary bodies. The prototype was tested in arctic lakes near Barrow, Alaska. Researchers at NASA’s Jet Propulsion Laboratory are developing the Buoyant Rover for Under-Ice Exploration, a technology that could one day explore oceans under the ice layers of planetary bodies. The prototype was tested in arctic lakes near Barrow, Alaska.
      Keep Exploring Discover More Topics From NASA
      Europa Clipper Resources
      Jupiter
      Jupiter Moons
      Science Missions
      View the full article
    • By European Space Agency
      Astronomers using the NASA/ESA/CSA James Webb Space Telescope have captured compelling evidence of a planet with a mass similar to Saturn orbiting the young nearby star TWA 7.
      If confirmed, this would represent Webb’s first direct image discovery of a planet, and the lightest planet ever seen with this technique.
      View the full article
    • By NASA
      5 Min Read Heather Cowardin Safeguards the Future of Space Exploration  
      As branch chief of the Hypervelocity Impact and Orbital Debris Office at NASA’s Johnson Space Center in Houston, Dr. Heather Cowardin leads a team tasked with a critical mission: characterizing and mitigating orbital debris—space junk that poses a growing risk to satellites, spacecraft, and human spaceflight. 
      Long before Cowardin was a scientist safeguarding NASA’s mission, she was a young girl near Johnson dreaming of becoming an astronaut.  
      “I remember driving down Space Center Boulevard with my mom and seeing people running on the trails,” she said. “I told her, ‘That will be me one day—I promise!’ And she always said, ‘I know, honey—I know you will.’” 
      Official portrait of Heather Cowardin. NASA/James Blai I was committed to working at NASA—no matter what it took.
      Heather Cowardin
      Hypervelocity Impact and Orbital Debris Branch Chief
      Today, that childhood vision has evolved into a leadership role at the heart of NASA’s orbital debris research. Cowardin oversees an interdisciplinary team within the Astromaterials Research and Exploration Science Division, or ARES. She supports measurements, modeling, risk assessments, and mitigation strategies to ensure the efficiency of space operations.  
      With more than two decades of experience, Cowardin brings expertise and unwavering dedication to one of the agency’s most vital safety initiatives. 
      Her work focuses on characterizing Earth-orbiting objects using optical and near-infrared telescopic and laboratory data. She helped establish and lead the Optical Measurement Center, a specialized facility at Johnson that replicates space-like lighting conditions and telescope orientations to identify debris materials and shapes, and evaluate potential risk. 
      Cowardin supports a range of research efforts, from ground-based and in-situ, or in position, observations to space-based experiments. She has contributed to more than 100 scientific publications and presentations and serves as co-lead on Materials International Space Station Experiment missions, which test the durability of materials on the exterior of the orbiting laboratory. 
      She is also an active member of the Inter-Agency Space Debris Coordination Committee, an international forum with the goal of minimizing and mitigating the risks posed by space debris.  
      Heather Cowardin, left, holds a spectrometer optical feed as she prepares to take a spectral measurement acquisition on the returned Wide Field Planetary Camera 2 radiator. It was inspected by the Orbital Debris Program Office team for micrometeoroid and orbital debris impacts at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, in 2009, and later studied for space weathering effects on its painted surface. Her passion was fueled further by a mentor, Dr. James R. Benbrook, a University of Houston space physics professor and radar scientist supporting the Orbital Debris Program Office. “He was a hard-core Texas cowboy and a brilliant physicist,” she said. “He brought me on as a NASA fellow to study orbital debris using optical imaging. After that, I was committed to working at NASA—no matter what it took.” 
      After completing her fellowship, Cowardin began graduate studies at the University of Houston while working full time. Within a year, she accepted a contract position at Johnson, where she helped develop the Optical Measurement Center and supported optical analyses of geosynchronous orbital debris. She soon advanced to optical lead, later serving as a contract project manager and section manager. 
      Heather Cowardin inspects targets to study the shapes of orbital debris using the Optical Measurement Center at NASA’s Johnson Space Center in Houston. What we do at NASA takes new thinking, new skills, and hard work—but I believe the next generation will raise the bar and lead us beyond low Earth orbit.
      Heather Cowardin
      Hypervelocity Impact and Orbital Debris Branch Chief
      Building on her growing expertise, Cowardin became the laboratory and in-situ measurements lead for the Orbital Debris Program Office, a program within the Office of Safety and Mission Assurance at NASA Headquarters. She led efforts to characterize debris and deliver direct measurement data to support orbital debris engineering models, such as NASA’s Orbital Debris Engineering Model and NASA’s Standard Satellite Breakup Model, while also overseeing major projects like DebriSat.  
      Cowardin was selected as the Orbital Debris and Hypervelocity Integration portfolio scientist, where she facilitated collaboration within the Hypervelocity Impact and Orbital Debris Office—both internally and externally with stakeholders and customers. These efforts laid the foundation for her current role as branch chief. 
      “I’ve really enjoyed reflecting on the path I’ve traveled and looking forward to the challenges and successes that lie ahead with this great team,” she said.  
      One of Cowardin’s proudest accomplishments was earning her doctorate while working full time and in her final trimester of pregnancy. 
      “Nothing speaks to multitasking and time management like that achievement,” Cowardin said. “I use that story to mentor others—it’s proof that you can do both. Now I’m a mom of two boys who inspire me every day. They are my motivation to work harder and show them that dedication and perseverance always pay off.” 
      From left to right: Heather Cowardin, her youngest child Jamie, her husband Grady, and her oldest child Trystan. The family celebrates Jamie’s achievement of earning a black belt. Throughout her career, Cowardin said one lesson has remained constant: never underestimate yourself. 
      “It’s easy to think, ‘I’m not ready,’ or ‘Someone else will ask the question,’” she said. “But speak up. Every role I’ve taken on felt like a leap, but I embraced it and each time I’ve learned and grown.” 
      She has also learned the value of self-awareness. “It’s scary to ask for feedback, but it’s the best way to identify growth opportunities,” she said. “The next generation will build on today’s work. That’s why we must capture lessons learned and share them. It’s vital to safe and successful operations.” 
      Heather Cowardin, fifth from left, stands with fellow NASA delegates at the 2024 Inter-Agency Space Debris Coordination Committee meeting hosted by the Indian Space Research Organisation in Bengaluru, India. The U.S. delegation included representatives from NASA, the Department of Defense, the Federal Aviation Administration, and the Federal Communications Commission. To the Artemis Generation, she hopes to pass on a sense of purpose. 
      “Commitment to a mission leads to success,” she said. “Even if your contributions aren’t immediately visible, they matter. What we do at NASA takes new thinking, new skills, and hard work—but I believe the next generation will raise the bar and lead us beyond low Earth orbit.” 
      When she is not watching over orbital debris, she is lacing up her running shoes. 
      “I’ve completed five half-marathons and I’m training for the 2026 Rock ‘n’ Roll half-marathon in Nashville,” she said. “Running helps me decompress—and yes, I often role-play technical briefings or prep conference talks while I’m out on a jog. Makes for interesting moments when I pass people in the neighborhood!” 
      About the Author
      Sumer Loggins

      Share
      Details
      Last Updated Jun 18, 2025 LocationJohnson Space Center Related Terms
      Science & Research Astromaterials Johnson Space Center People of Johnson Explore More
      5 min read Johnson’s Jason Foster Recognized for New Technology Reporting Record
      Article 1 week ago 3 min read NASA Engineers Simulate Lunar Lighting for Artemis III Moon Landing
      Article 6 days ago 5 min read Driven by a Dream: Farah Al Fulfulee’s Quest to Reach the Stars
      Article 6 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA/Charles Beason Two students guide their rover through an obstacle course in this April 11, 2025, image from the 2025 Human Exploration Rover Challenge. The annual engineering competition – one of NASA’s longest standing student challenges – is in its 31st year. This year’s competition challenged teams to design, build, and test a lunar rover powered by either human pilots or remote control. More than 500 students with 75 teams from around the world participated, representing 35 colleges and universities, 38 high schools, and two middle schools from 20 states, Puerto Rico, and 16 other nations.
      See the 2025 winners.
      Image credit: NASA/Charles Beason
      View the full article
  • Check out these Videos

×
×
  • Create New...