Jump to content

30 Years Ago: STS-64 Astronauts Test a Spacewalk Rescue Aid


Recommended Posts

  • Publishers
Posted

On Sept. 9, 1994, space shuttle Discovery took to the skies on its 19th trip into space. During their 11-day mission, the STS-64 crew of Commander Richard “Dick” N. Richards, Pilot L. Blaine Hammond, and Mission Specialists Jerry M. Linenger, Susan J. Helms, Carl J. Meade, and Mark C. Lee demonstrated many of the space shuttle’s capabilities. They used a laser instrument to observe the Earth’s atmosphere, deployed and retrieved a science satellite, and used the shuttle’s robotic arm for a variety of tasks, including studying the orbiter itself. During a spacewalk, Lee and Meade tested a new device to rescue astronauts who found themselves detached from the vehicle. Astronauts today use the device routinely for spacewalks from the International Space Station.

The STS-64 crew patch Official photo of the STS-64 crew The patch for the Lidar In-space Technology Experiment
Left: The STS-64 crew patch. Middle: Official photo of the STS-64 crew of L. Blaine Hammond, front row left, Richard “Dick” N. Richards, and Susan J. Helms; Mark C. Lee, back row left, Jerry M. Linenger, and Carl J. Meade. Right: The patch for the Lidar In-space Technology Experiment.

In November 1993, NASA announced the five-person all-veteran STS-64 crew. Richards, selected as an astronaut in 1980, had made three previous spaceflights, STS-28, STS-41, and STS-50. Lee, a member of the astronaut class of 1984, had two flights to his credit, STS-30 and STS-47, as did Meade, selected in 1985 and a veteran of STS-38 and STS-50. Each making their second trip into space, Hammond, selected in 1984 had flown on STS-39, and Helms, from the class of 1990 had flown on STS-54. In February 1994, NASA added first time space flyer Linenger to the crew, partly to make him eligible for a flight to Mir. He holds the distinction as the first member of his astronaut class of 1992 to fly in space.

Workers tow Discovery from the Orbiter Processing Facility to the Vehicle Assembly Building at NASA’s Kennedy Space Center (KSC) in Florida Space shuttle Discovery arrives at Launch Pad 39B, left, with space shuttle Endeavour still on Launch Pad 39A The STS-64 crew exits crew quarters at KSC on their way to the launch
Left: Workers tow Discovery from the Orbiter Processing Facility to the Vehicle Assembly Building at NASA’s Kennedy Space Center (KSC) in Florida. Middle: Space shuttle Discovery arrives at Launch Pad 39B, left, with space shuttle Endeavour still on Launch Pad 39A. Right: The STS-64 crew exits crew quarters at KSC on their way to the launch.

Discovery returned to NASA’s Kennedy Space Center (KSC) in Florida following its previous flight, the STS-60 mission, in February 1994. Workers in KSC’s Orbiter Processing Facility (OPF) removed the previous payload and began to service the orbiter. On May 26, workers moved Discovery into the Vehicle Assembly Building for temporary storage to make room in the OPF for Atlantis, just returned from Palmdale, California, where it underwent modifications to enable extended duration flights and dockings with space stations. Discovery returned to the OPF for payload installation in July, and rolled back to the VAB on Aug. 11 for mating with its external tank and solid rocket boosters. Discovery rolled out to Launch Pad 39B on Aug. 19, with its sister ship Endeavour still on Launch Pad 39A following the previous day’s launch abort. The six-person crew traveled to KSC to participate in the Terminal Countdown Demonstration Test, essentially a dress rehearsal for the launch countdown, on Aug. 24.

Liftoff of Discovery on the STS-64 mission
Liftoff of Discovery on the STS-64 mission.

On Sept. 9, 1994, after a more than two-hour delay caused by inclement weather, Discovery thundered into the sky to begin the STS-64 mission. Eight and a half minutes later, the orbiter and its crew reached space, and with a firing of the shuttle’s Orbiter Maneuvering System (OMS) engines they entered a 160-mile orbit inclined 57 degrees to the equator, ideal for Earth and atmospheric observations. The crew opened the payload bay doors, deploying the shuttle’s radiators, and removed their bulky launch and entry suits, stowing them for the remainder of the flight. They began to convert their vehicle into a science platform.

LIDAR (light detection and ranging) In-space Technology Experiment (LITE) telescope in Discovery’s payload bay Schematic of LITE data acquisition Image created from LITE data of clouds over southeast Asia
Left: LIDAR (light detection and ranging) In-space Technology Experiment (LITE) telescope in Discovery’s payload bay. Middle: Schematic of LITE data acquisition. Right: Image created from LITE data of clouds over southeast Asia.

One of the primary payloads on STS-64, the LIDAR (light detection and ranging) In-space Technology Experiment (LITE), mounted in Discovery’s forward payload bay, made the first use of a laser to study Earth’s atmosphere, cloud cover, and airborne dust from space. Lee, with help from Richards and Meade, activated LITE, built at NASA’s Langley Research Center in Hampton, Virginia, on the flight’s first day. The experiment operated for 53 hours during the mission, gathering 43 hours of high-rate data shared with 65 groups in 20 countries.

View of the shuttle’s Remote Manipulator System Closeup view of SPIFEX A video camera view of Discovery from SPIFEX
Left: View of the shuttle’s Remote Manipulator System, or robotic arm, holding the 33-foot long Shuttle Plume Impingement Flight Experiment (SPIFEX). Middle: Closeup view of SPIFEX. Right: A video camera view of Discovery from SPIFEX.

The Shuttle Plume Impingement Flight Experiment (SPIFEX), built at NASA’s Johnson Space Center (JSC) in Houston, consisted of a package of instruments positioned on the end of a 33-foot boom, to characterize the behavior of the shuttle’s Reaction Control System (RCS) thrusters. On the flight’s second day, Helms used the shuttle’s Remote Manipulator System (RMS), or robotic arm, to pick up SPIFEX. Over the course of the mission, she, Lee, and Hammond took turns operating the arm to obtain 100 test points during various thruster firings. A video camera on SPIFEX returned images of Discovery from several unusual angles.

Astronaut Susan J. Helms lifts the Shuttle Pointed Autonomous Research Tool for Astronomy-201 (SPARTAN-201) out of Discovery’s payload bay prior to its release Discovery approaches SPARTAN during the rendezvous Astronaut Susan J. Helms operating the Shuttle’s Remote Manipulator System prepares to grapple SPARTAN
Left: Astronaut Susan J. Helms lifts the Shuttle Pointed Autonomous Research Tool for Astronomy-201 (SPARTAN-201) out of Discovery’s payload bay prior to its release. Middle: Discovery approaches SPARTAN during the rendezvous. Right: Astronaut Susan J. Helms operating the Shuttle’s Remote Manipulator System prepares to grapple SPARTAN.

On the mission’s fifth day, Helms used the RMS to lift the Shuttle Pointed Autonomous Research Tool for Astronomy-201 (SPARTAN-201) satellite out of the payload bay and released it. Two and a half minutes later, SPARTAN activated itself, and Richards maneuvered Discovery away from the satellite so it could begin its science mission. On flight day seven, Discovery began its rendezvous with SPARTAN, and Hammond flew the shuttle close enough for Helms to grapple it with the arm and place it back in the payload bay. During its two-day free flight, SPARTAN’s two telescopes studied the acceleration and velocity of the solar wind and measured aspects of the Sun’s corona or outer atmosphere.

Patch for the Simplified Aid for EVA (Extravehicular Activity) Rescue (SAFER) Astronauts Mark C. Lee, left, and Carl J. Meade during the 15-minute prebreathe prior to their spacewalk Lee, left, tests the SAFER while Meade works on other tasks in the payload bay
Left: Patch for the Simplified Aid for EVA (Extravehicular Activity) Rescue (SAFER). Middle: Astronauts Mark C. Lee, left, and Carl J. Meade during the 15-minute prebreathe prior to their spacewalk. Right: Lee, left, tests the SAFER while Meade works on other tasks in the payload bay.

On flight day seven, in preparation for the following day’s spacewalk, the astronauts lowered the pressure in the shuttle from 14.7 pounds per square inch (psi) to 10.2 psi to reduce the likelihood of the spacewalkers, Lee and Meade, from developing decompression sickness, also known as the bends. As an added measure, the two spent 15 minutes breathing pure oxygen before donning their spacesuits and exiting the shuttle’s airlock.

Astronaut Mark C. Lee tests the Simplified Aid for EVA (Extravehicular Activity) Rescue (SAFER) during an untethered spacewalk Astronaut Carl J. Meade tests the SAFER during an untethered spacewalk Meade, left, tests the ability of the SAFER to stop his spinning as Lee looks on
Left: Astronaut Mark C. Lee tests the Simplified Aid for EVA (Extravehicular Activity) Rescue (SAFER) during an untethered spacewalk. Middle: Astronaut Carl J. Meade tests the SAFER during an untethered spacewalk. Right: Meade, left, tests the ability of the SAFER to stop his spinning as Lee looks on.

The main tasks of the spacewalk involved testing the Simplified Aid for EVA (Extravehicular Activity) Rescue (SAFER), a device designed at JSC that attaches to the spacesuit’s Portable Life Support System backpack. The SAFER contains nitrogen jets that an astronaut can use, should he or she become untethered, to fly back to the vehicle, either the space shuttle or the space station. The two put the SAFER through a series of tests, including a familiarization, a system engineering evaluation, a crew rescue evaluation, and a precision flight evaluation. During the tests, Lee and Meade remained untethered from the shuttle, the first untethered spacewalk since STS-51A in November 1984. Lee and Meade successfully completed all the tests and gave the SAFER high marks. Astronauts conducting spacewalks from the space station use the SAFER as a standard safety device. Following the 6-hour 51-minute spacewalk, the astronauts raised the shuttle’s atmosphere back to 14.7 psi.

Mt. St. Helens in Washington State Cleveland, Ohio Rabaul Volcano, Papua New Guinea Banks Peninsula, New Zealand
A selection of STS-64 crew Earth observation photographs. Left: Mt. St. Helens in Washington State. Middle left: Cleveland, Ohio. Middle right: Rabaul Volcano, Papua New Guinea. Right: Banks Peninsula, New Zealand.

Like on all space missions, the STS-64 astronauts spent their spare time looking out the window. They took numerous photographs of the Earth, their high inclination orbit allowing them views of parts of the planet not seen during typical shuttle missions.

The Solid Surface Combustion Experiment middeck payload Jerry M. Linenger gets in a workout while also evaluating the treadmill Inflight photograph of the STS-64 crew
Left: The Solid Surface Combustion Experiment middeck payload. Middle: Jerry M. Linenger gets in a workout while also evaluating the treadmill. Right: Inflight photograph of the STS-64 crew.

In addition to their primary tasks, the STS-64 crew also conducted a series of middeck experiments and tested hardware for future use on the space shuttle and space station.

Commander Richard “Dick” Richards suited up for reentry Pilot L. Blaine Hammond, left, and Mission Specialists Carl J. Meade and Susan J. Helms prepare for reentry Hammond fully suited for entry and landing
Left: Commander Richard “Dick” Richards suited up for reentry. Middle: Pilot L. Blaine Hammond, left, and Mission Specialists Carl J. Meade and Susan J. Helms prepare for reentry. Right: Hammond fully suited for entry and landing.

Mission managers had extended the original flight duration by one day for additional data collection for the various payloads. On the planned reentry day, Sept. 19, bad weather at KSC forced the crew to spend an additional day in space. The next day, continuing inclement weather caused them to wave off the first two landing attempts at KSC and diverted to Edwards Air Force Base (AFB) in California.

Richard Richards brings Discovery home at California’s Edwards Air Force Base Workers at Edwards safe Discovery after its return from STS-64 Discovery takes off from Edwards atop a Shuttle Carrier Aircraft for the ferry flight to NASA’s Kennedy Space Center in Florida
Left: Richard Richards brings Discovery home at California’s Edwards Air Force Base. Middle: Workers at Edwards safe Discovery after its return from STS-64. Right: Discovery takes off from Edwards atop a Shuttle Carrier Aircraft for the ferry flight to NASA’s Kennedy Space Center in Florida.

On Sept. 20, they closed Discovery’s payload bay doors, donned their launch and entry suits, and strapped themselves into their seats for entry and landing. They fired Discover’s OMS engines to drop them out of orbit. Richards piloted Discovery to a smooth landing at Edwards, ending the 10-day 22-hour 50-minute flight. The crew had orbited the Earth 176 times. Workers at Edwards safed the vehicle and placed it atop a Shuttle Carrier Aircraft for the ferry flight back to KSC. The duo left Edwards on Sept. 26, and after an overnight stop at Kelly AFB in San Antonio, arrived at KSC the next day. Workers there began preparing Discovery for its next flight, the STS-63 Mir rendezvous mission, in February 1995.

Enjoy the crew narrate a video about the STS-64 mission. Read Richards’ recollections of the mission in his oral history with the JSC History Office.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The The Stratospheric Projectile Entry Experiment on Dynamics (SPEED), a two-stage stratospheric drop test architecture, is currently under development to bridge the state-of-the-art gap that many NASA flagship missions require to reduce system risk and enable more optimized designs via margin reduction. To do this, a two-stage vehicle will drop from a high-altitude balloon and use the first stage (an LV-Haack cone aeroshell) to accelerate the sub-scale test model to supersonic conditions. The onboard avionics will then release the test model into freestream flow at the proper altitude in Earth’s atmosphere for dynamic Mach scaling to the full-scale flight trajectory. SPEED leverages low-cost methods of manufacturing such as 3D printing and laser/water-jet cutting to enable 8 or more two-stage vehicles to be dropped in a single test, making the science-to-dollar density much higher than any current ground-test facility NASA has at its disposal. The goal is to develop a robust ejection system that can reliably introduce the test models into supersonic flow with a tight variance on initial condition perturbation. The separation system must be capable of handling a range of initial angle-of-attacks, keep the test model secure in the first stage during take-off and descent, and eject the test model in such a way that it does not linger behind the first stage and be affected by the resulting wake. As current ejection system designs are conceptual, complex, and untested, NASA is looking for alternative ideas that can be incorporated into the design of their next iteration of SPEED flight vehicles to increase system reliability. We are challenging the public to design innovative concepts for a separation mechanism that can be used to assess NASA and commercial reentry vehicle stability.
      Award: $7,000 in total prizes
      Open Date: July 14, 2025
      Close Date: September 8, 2025
      For more information, visit: https://grabcad.com/challenges/ejection-mechanism-design-for-the-speed-test-architecture

      View the full article
    • By NASA
      NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Alex Parker This image, taken by NASA’s New Horizons spacecraft on July 14, 2015, is the most accurate natural color image of Pluto. This natural-color image results from refined calibration of data gathered by New Horizons’ color Multispectral Visible Imaging Camera (MVIC). The processing creates images that would approximate the colors that the human eye would perceive, bringing them closer to “true color” than the images released near the encounter. This single color MVIC scan includes no data from other New Horizons imagers or instruments added. The striking features on Pluto are clearly visible, including the bright expanse of Pluto’s icy, nitrogen-and-methane rich “heart,” Sputnik Planitia.
      Image credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Alex Parker
      View the full article
    • By NASA
      Japan Aerospace Exploration Agency (JAXA) Researchers from NASA and the Japanese Aerospace Exploration Agency (JAXA) recently tested a scale model of the X-59 experimental aircraft in a supersonic wind tunnel located in Chofu, Japan, to assess the noise audible underneath the aircraft. The model can be seen in the wind tunnel in this image released on July 11, 2025.
      The test was an important milestone for NASA’s one-of-a-kind X-59, which is designed to fly faster than the speed of sound without causing a loud sonic boom. When the X-59 flies, sound underneath it – a result of its pressure signature – will be a critical factor for what people hear on the ground. 
      This marked the third round of wind tunnel tests for the X-59 model, following a previous test at JAXA and at NASA’s Glenn Research Center in Cleveland. The data will help researchers understand the noise level that will be created by the shock waves the X-59 produces at supersonic speeds.
      Image credit: JAXA
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The high-altitude WB-57 aircraft departed July 8, 2025, from Ellington Field in Houston, Texas, headed to the Texas Hill Country. The aircraft will use the DyNAMITE (Day/Night Airborne Motion Imager for Terrestrial Environments) sensor system to take video mosaics of the area to assist with the emergency response effort. Photo Credit: NASA/Morgan Gridley In response to recent flooding near Kerrville, Texas, NASA deployed two aircraft to assist state and local authorities in ongoing recovery operations.

      The aircraft are part of the response from NASA’s Disasters Response Coordination System, which is activated to support emergency response for the flooding and is working closely with the Texas Division of Emergency Management, the Federal Emergency Management Agency (FEMA), and the humanitarian groups Save the Children and GiveDirectly.

      Persistent cloud-cover has made it difficult to obtain clear satellite imagery, so the Disasters Program coordinated with NASA’s Airborne Science Program at NASA’s Johnson Space Flight Center in Houston to conduct a series of flights to gather observations of the impacted regions. NASA is sharing these data directly with emergency response teams to inform their search and rescue efforts and aid decision-making and resource allocation.

      The high-altitude WB-57 aircraft operated by NASA Johnson departed from Ellington Field on July 8 to conduct aerial surveys. The aircraft is equipped with the DyNAMITE (Day/Night Airborne Motion Imager for Terrestrial Environments) sensor.

      The DyNAMITE sensor views the Guadalupe River[KA1] [RC2]  and several miles of the surrounding area, providing high-resolution imagery critical to assessing damage and supporting coordination of ground-based recovery efforts. This system enables real-time collection and analysis of data, enhancing situational awareness and accelerating emergency response times.

      In addition, the agency’s Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) is flying out of NASA’s Armstrong Flight Research Center in Edwards, California, aboard a Gulfstream III. Managed by the agency’s Jet Propulsion Laboratory in Southern California, the UAVSAR team is planning to collect observations over the Guadalupe, San Gabriel, and Colorado river basins Wednesday, Thursday, and Friday. Because UAVSAR can penetrate vegetation to spot water that optical sensors are unable to detect, the team’s goal is to characterize the extent of flooding to help with understanding the amount of damage within communities.

      Flights are being coordinated with FEMA, the Texas Division of Emergency Management, and local responders to ensure data is quickly delivered to those making decisions on the ground. Imagery collected will be sent to NASA’s Disaster Response Coordination System.

      Additionally, the Disasters Program, which is part of NASA’s Earth Science Division, is working to produce maps and data to assess the location and severity of flooding in the region and damage to buildings and infrastructure. These data are being shared on the NASA Disasters Mapping Portal as they become available.

      Read More Share
      Details
      Last Updated Jul 09, 2025 Related Terms
      Earth Applied Sciences Program Earth Science Division Ellington Field Floods General Jet Propulsion Laboratory Johnson Space Center NASA Aircraft NASA Headquarters Science Mission Directorate WB-57 Explore More
      2 min read Polar Tourists Give Positive Reviews to NASA Citizen Science in Antarctica
      Citizen science projects result in an overwhelmingly positive impact on the polar tourism experience. That’s…
      Article 6 hours ago 3 min read Aaisha Ali: From Marine Biology to the Artemis Control Room 
      Article 2 days ago 4 min read NASA Mission Monitoring Air Quality from Space Extended 
      Article 6 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      As Hubble marks three and a half decades of scientific breakthroughs and technical resilience, the “Hubble at 35 Years” symposium offers a platform to reflect on the mission’s historical, operational, and scientific legacy. Hubble’s trajectory—from early challenges to becoming a symbol of American scientific ingenuity—presents valuable lessons in innovation, collaboration, and crisis response. Bringing together scientists, engineers, and historians at NASA Headquarters ensures that this legacy informs current and future mission planning, including operations for the James Webb Space Telescope, Roman Space Telescope, and other next-generation observatories. The symposium not only honors Hubble’s transformative contributions but also reinforces NASA’s commitment to learning from the past to shape a more effective and ambitious future for space science.
      Hubble at 35 Years
      Lessons Learned in Scientific Discovery and NASA Flagship Mission Operations
      October 16–17, 2025
      James Webb Auditorium, NASA HQ, Washington, D.C.
      The giant Hubble Space Telescope (HST) can be seen as it is suspended in space by Discovery’s Remote Manipulator System (RMS) following the deployment of part of its solar panels and antennae on April 25, 1990.NASA The story of the Hubble Space Telescope confirms its place as the most transformative and significant astronomical observatory in history. Once called “the eighth wonder of the world” by a former NASA administrator, Hubble’s development since its genesis in the early 1970s and its launch, repair, and ultimate impact since 1990 provide ample opportunity to apply insights from its legacy. Scientists and engineers associated with groundbreaking discoveries have always operated within contexts shaped by forces including the government, private industry, the military, and the public at large. The purpose of this symposium is to explore the insights from Hubble’s past and draw connections that can inform the development of mission work today and for the future.
      Contact the Organizer Keep Exploring Discover More Topics From NASA
      Hubble’s 35th Anniversary
      Universe
      Humans In Space
      NASA History

      View the full article
  • Check out these Videos

×
×
  • Create New...