Jump to content

30 Years Ago: STS-64 Astronauts Test a Spacewalk Rescue Aid


Recommended Posts

  • Publishers
Posted

On Sept. 9, 1994, space shuttle Discovery took to the skies on its 19th trip into space. During their 11-day mission, the STS-64 crew of Commander Richard “Dick” N. Richards, Pilot L. Blaine Hammond, and Mission Specialists Jerry M. Linenger, Susan J. Helms, Carl J. Meade, and Mark C. Lee demonstrated many of the space shuttle’s capabilities. They used a laser instrument to observe the Earth’s atmosphere, deployed and retrieved a science satellite, and used the shuttle’s robotic arm for a variety of tasks, including studying the orbiter itself. During a spacewalk, Lee and Meade tested a new device to rescue astronauts who found themselves detached from the vehicle. Astronauts today use the device routinely for spacewalks from the International Space Station.

The STS-64 crew patch Official photo of the STS-64 crew The patch for the Lidar In-space Technology Experiment
Left: The STS-64 crew patch. Middle: Official photo of the STS-64 crew of L. Blaine Hammond, front row left, Richard “Dick” N. Richards, and Susan J. Helms; Mark C. Lee, back row left, Jerry M. Linenger, and Carl J. Meade. Right: The patch for the Lidar In-space Technology Experiment.

In November 1993, NASA announced the five-person all-veteran STS-64 crew. Richards, selected as an astronaut in 1980, had made three previous spaceflights, STS-28, STS-41, and STS-50. Lee, a member of the astronaut class of 1984, had two flights to his credit, STS-30 and STS-47, as did Meade, selected in 1985 and a veteran of STS-38 and STS-50. Each making their second trip into space, Hammond, selected in 1984 had flown on STS-39, and Helms, from the class of 1990 had flown on STS-54. In February 1994, NASA added first time space flyer Linenger to the crew, partly to make him eligible for a flight to Mir. He holds the distinction as the first member of his astronaut class of 1992 to fly in space.

Workers tow Discovery from the Orbiter Processing Facility to the Vehicle Assembly Building at NASA’s Kennedy Space Center (KSC) in Florida Space shuttle Discovery arrives at Launch Pad 39B, left, with space shuttle Endeavour still on Launch Pad 39A The STS-64 crew exits crew quarters at KSC on their way to the launch
Left: Workers tow Discovery from the Orbiter Processing Facility to the Vehicle Assembly Building at NASA’s Kennedy Space Center (KSC) in Florida. Middle: Space shuttle Discovery arrives at Launch Pad 39B, left, with space shuttle Endeavour still on Launch Pad 39A. Right: The STS-64 crew exits crew quarters at KSC on their way to the launch.

Discovery returned to NASA’s Kennedy Space Center (KSC) in Florida following its previous flight, the STS-60 mission, in February 1994. Workers in KSC’s Orbiter Processing Facility (OPF) removed the previous payload and began to service the orbiter. On May 26, workers moved Discovery into the Vehicle Assembly Building for temporary storage to make room in the OPF for Atlantis, just returned from Palmdale, California, where it underwent modifications to enable extended duration flights and dockings with space stations. Discovery returned to the OPF for payload installation in July, and rolled back to the VAB on Aug. 11 for mating with its external tank and solid rocket boosters. Discovery rolled out to Launch Pad 39B on Aug. 19, with its sister ship Endeavour still on Launch Pad 39A following the previous day’s launch abort. The six-person crew traveled to KSC to participate in the Terminal Countdown Demonstration Test, essentially a dress rehearsal for the launch countdown, on Aug. 24.

Liftoff of Discovery on the STS-64 mission
Liftoff of Discovery on the STS-64 mission.

On Sept. 9, 1994, after a more than two-hour delay caused by inclement weather, Discovery thundered into the sky to begin the STS-64 mission. Eight and a half minutes later, the orbiter and its crew reached space, and with a firing of the shuttle’s Orbiter Maneuvering System (OMS) engines they entered a 160-mile orbit inclined 57 degrees to the equator, ideal for Earth and atmospheric observations. The crew opened the payload bay doors, deploying the shuttle’s radiators, and removed their bulky launch and entry suits, stowing them for the remainder of the flight. They began to convert their vehicle into a science platform.

LIDAR (light detection and ranging) In-space Technology Experiment (LITE) telescope in Discovery’s payload bay Schematic of LITE data acquisition Image created from LITE data of clouds over southeast Asia
Left: LIDAR (light detection and ranging) In-space Technology Experiment (LITE) telescope in Discovery’s payload bay. Middle: Schematic of LITE data acquisition. Right: Image created from LITE data of clouds over southeast Asia.

One of the primary payloads on STS-64, the LIDAR (light detection and ranging) In-space Technology Experiment (LITE), mounted in Discovery’s forward payload bay, made the first use of a laser to study Earth’s atmosphere, cloud cover, and airborne dust from space. Lee, with help from Richards and Meade, activated LITE, built at NASA’s Langley Research Center in Hampton, Virginia, on the flight’s first day. The experiment operated for 53 hours during the mission, gathering 43 hours of high-rate data shared with 65 groups in 20 countries.

View of the shuttle’s Remote Manipulator System Closeup view of SPIFEX A video camera view of Discovery from SPIFEX
Left: View of the shuttle’s Remote Manipulator System, or robotic arm, holding the 33-foot long Shuttle Plume Impingement Flight Experiment (SPIFEX). Middle: Closeup view of SPIFEX. Right: A video camera view of Discovery from SPIFEX.

The Shuttle Plume Impingement Flight Experiment (SPIFEX), built at NASA’s Johnson Space Center (JSC) in Houston, consisted of a package of instruments positioned on the end of a 33-foot boom, to characterize the behavior of the shuttle’s Reaction Control System (RCS) thrusters. On the flight’s second day, Helms used the shuttle’s Remote Manipulator System (RMS), or robotic arm, to pick up SPIFEX. Over the course of the mission, she, Lee, and Hammond took turns operating the arm to obtain 100 test points during various thruster firings. A video camera on SPIFEX returned images of Discovery from several unusual angles.

Astronaut Susan J. Helms lifts the Shuttle Pointed Autonomous Research Tool for Astronomy-201 (SPARTAN-201) out of Discovery’s payload bay prior to its release Discovery approaches SPARTAN during the rendezvous Astronaut Susan J. Helms operating the Shuttle’s Remote Manipulator System prepares to grapple SPARTAN
Left: Astronaut Susan J. Helms lifts the Shuttle Pointed Autonomous Research Tool for Astronomy-201 (SPARTAN-201) out of Discovery’s payload bay prior to its release. Middle: Discovery approaches SPARTAN during the rendezvous. Right: Astronaut Susan J. Helms operating the Shuttle’s Remote Manipulator System prepares to grapple SPARTAN.

On the mission’s fifth day, Helms used the RMS to lift the Shuttle Pointed Autonomous Research Tool for Astronomy-201 (SPARTAN-201) satellite out of the payload bay and released it. Two and a half minutes later, SPARTAN activated itself, and Richards maneuvered Discovery away from the satellite so it could begin its science mission. On flight day seven, Discovery began its rendezvous with SPARTAN, and Hammond flew the shuttle close enough for Helms to grapple it with the arm and place it back in the payload bay. During its two-day free flight, SPARTAN’s two telescopes studied the acceleration and velocity of the solar wind and measured aspects of the Sun’s corona or outer atmosphere.

Patch for the Simplified Aid for EVA (Extravehicular Activity) Rescue (SAFER) Astronauts Mark C. Lee, left, and Carl J. Meade during the 15-minute prebreathe prior to their spacewalk Lee, left, tests the SAFER while Meade works on other tasks in the payload bay
Left: Patch for the Simplified Aid for EVA (Extravehicular Activity) Rescue (SAFER). Middle: Astronauts Mark C. Lee, left, and Carl J. Meade during the 15-minute prebreathe prior to their spacewalk. Right: Lee, left, tests the SAFER while Meade works on other tasks in the payload bay.

On flight day seven, in preparation for the following day’s spacewalk, the astronauts lowered the pressure in the shuttle from 14.7 pounds per square inch (psi) to 10.2 psi to reduce the likelihood of the spacewalkers, Lee and Meade, from developing decompression sickness, also known as the bends. As an added measure, the two spent 15 minutes breathing pure oxygen before donning their spacesuits and exiting the shuttle’s airlock.

Astronaut Mark C. Lee tests the Simplified Aid for EVA (Extravehicular Activity) Rescue (SAFER) during an untethered spacewalk Astronaut Carl J. Meade tests the SAFER during an untethered spacewalk Meade, left, tests the ability of the SAFER to stop his spinning as Lee looks on
Left: Astronaut Mark C. Lee tests the Simplified Aid for EVA (Extravehicular Activity) Rescue (SAFER) during an untethered spacewalk. Middle: Astronaut Carl J. Meade tests the SAFER during an untethered spacewalk. Right: Meade, left, tests the ability of the SAFER to stop his spinning as Lee looks on.

The main tasks of the spacewalk involved testing the Simplified Aid for EVA (Extravehicular Activity) Rescue (SAFER), a device designed at JSC that attaches to the spacesuit’s Portable Life Support System backpack. The SAFER contains nitrogen jets that an astronaut can use, should he or she become untethered, to fly back to the vehicle, either the space shuttle or the space station. The two put the SAFER through a series of tests, including a familiarization, a system engineering evaluation, a crew rescue evaluation, and a precision flight evaluation. During the tests, Lee and Meade remained untethered from the shuttle, the first untethered spacewalk since STS-51A in November 1984. Lee and Meade successfully completed all the tests and gave the SAFER high marks. Astronauts conducting spacewalks from the space station use the SAFER as a standard safety device. Following the 6-hour 51-minute spacewalk, the astronauts raised the shuttle’s atmosphere back to 14.7 psi.

Mt. St. Helens in Washington State Cleveland, Ohio Rabaul Volcano, Papua New Guinea Banks Peninsula, New Zealand
A selection of STS-64 crew Earth observation photographs. Left: Mt. St. Helens in Washington State. Middle left: Cleveland, Ohio. Middle right: Rabaul Volcano, Papua New Guinea. Right: Banks Peninsula, New Zealand.

Like on all space missions, the STS-64 astronauts spent their spare time looking out the window. They took numerous photographs of the Earth, their high inclination orbit allowing them views of parts of the planet not seen during typical shuttle missions.

The Solid Surface Combustion Experiment middeck payload Jerry M. Linenger gets in a workout while also evaluating the treadmill Inflight photograph of the STS-64 crew
Left: The Solid Surface Combustion Experiment middeck payload. Middle: Jerry M. Linenger gets in a workout while also evaluating the treadmill. Right: Inflight photograph of the STS-64 crew.

In addition to their primary tasks, the STS-64 crew also conducted a series of middeck experiments and tested hardware for future use on the space shuttle and space station.

Commander Richard “Dick” Richards suited up for reentry Pilot L. Blaine Hammond, left, and Mission Specialists Carl J. Meade and Susan J. Helms prepare for reentry Hammond fully suited for entry and landing
Left: Commander Richard “Dick” Richards suited up for reentry. Middle: Pilot L. Blaine Hammond, left, and Mission Specialists Carl J. Meade and Susan J. Helms prepare for reentry. Right: Hammond fully suited for entry and landing.

Mission managers had extended the original flight duration by one day for additional data collection for the various payloads. On the planned reentry day, Sept. 19, bad weather at KSC forced the crew to spend an additional day in space. The next day, continuing inclement weather caused them to wave off the first two landing attempts at KSC and diverted to Edwards Air Force Base (AFB) in California.

Richard Richards brings Discovery home at California’s Edwards Air Force Base Workers at Edwards safe Discovery after its return from STS-64 Discovery takes off from Edwards atop a Shuttle Carrier Aircraft for the ferry flight to NASA’s Kennedy Space Center in Florida
Left: Richard Richards brings Discovery home at California’s Edwards Air Force Base. Middle: Workers at Edwards safe Discovery after its return from STS-64. Right: Discovery takes off from Edwards atop a Shuttle Carrier Aircraft for the ferry flight to NASA’s Kennedy Space Center in Florida.

On Sept. 20, they closed Discovery’s payload bay doors, donned their launch and entry suits, and strapped themselves into their seats for entry and landing. They fired Discover’s OMS engines to drop them out of orbit. Richards piloted Discovery to a smooth landing at Edwards, ending the 10-day 22-hour 50-minute flight. The crew had orbited the Earth 176 times. Workers at Edwards safed the vehicle and placed it atop a Shuttle Carrier Aircraft for the ferry flight back to KSC. The duo left Edwards on Sept. 26, and after an overnight stop at Kelly AFB in San Antonio, arrived at KSC the next day. Workers there began preparing Discovery for its next flight, the STS-63 Mir rendezvous mission, in February 1995.

Enjoy the crew narrate a video about the STS-64 mission. Read Richards’ recollections of the mission in his oral history with the JSC History Office.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA/Charles Beason Students from the University of Massachusetts Amherst team carry their high-powered rocket toward the launch pad at NASA’s 2025 Student Launch launch day competition in Toney, Alabama, on April 4, 2025. More than 980 middle school, high school, and college students from across the nation launched more than 40 high-powered amateur rockets just north of NASA’s Marshall Space Flight Center in Huntsville, Alabama. This year marked the 25th anniversary of the competition.
      To compete, students follow the NASA engineering design lifecycle by going through a series of reviews for nine months leading up to launch day. Each year, a payload challenge is issued to the university teams, and this year’s task focused on communication. Teams were required to have “reports” from STEMnauts, non-living objects inside their rocket, that had to relay real-time data to the student team’s mission control. This Artemis Student Challenge took inspiration from the agency’s Artemis missions, where NASA will send astronauts to explore the Moon for scientific discovery, economic benefit, and to build the foundation for the first crewed missions to Mars.
      See highlights from the 2025 Student Launch.
      Text credit: NASA/Janet Sudnik
      Image credit: NASA/Charles Beason
      View the full article
    • By NASA
      NASA astronauts Anne McClain (bottom) and Nichole Ayers (top), both Expedition 73 Flight Engineers, checkout spacesuit hardware in the Quest airlock and review procedures for a May 1 spacewalk. Credit: NASA Johnson Space Center NASA astronauts Nichole Ayers and Anne McClain will answer prerecorded questions about science, technology, engineering, and mathematics from students in Bethpage, New York. The two astronauts are currently aboard the International Space Station.
      Watch the 20-minute Earth-to-space call at 12:45 p.m. EDT on Friday, May 16, on the NASA STEM YouTube Channel.
      Media interested in covering the event must RSVP no later than 5 p.m., Tuesday, May 13, by contacting Francesca Russell at: frussell@syntaxny.com or 516-644-4330.
      The event is hosted by Central Boulevard Elementary School. As part of the call, students will highlight their year-long reading program, “Reading is a Blast-Exploring a Universe of Stories.”
      For more than 24 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
      Important research and technology investigations taking place aboard the space station benefit people on Earth and lays the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery.
      See videos of astronauts aboard the space station at:
      https://www.nasa.gov/stemonstation
      -end-
      Gerelle Dodson
      Headquarters, Washington
      202-358-1600
      gerelle.q.dodson@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated May 09, 2025 LocationNASA Headquarters Related Terms
      NASA Headquarters International Space Station (ISS) Johnson Space Center View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Editor’s Note: The following is one of three related articles about the NASA Data Acquisition System and related efforts. Please visit Stennis News – NASA to access accompanying articles.
      A blended team of NASA personnel and contractors support ongoing development and operation of the NASA Data Acquisition System at NASA’s Stennis Space Center. Team members include, left to right: Andrew Graves (NASA), Shane Cravens (Syncom Space Services), Peggi Marshall (Syncom Space Services), Nicholas Payton Karno (Syncom Space Services), Alex Elliot (NASA), Kris Mobbs (NASA), Brandon Carver (NASA), Richard Smith (Syncom Space Services), and David Carver (NASA)NASA/Danny Nowlin Members of the NASA Data Acquisition System team at NASA’s Stennis Space Center evaluate system hardware for use in monitoring and collecting propulsion test data at the site.NASA/Danny Nowlin NASA software engineer Alex Elliot, right, and Syncom Space Services software engineer Peggi Marshall fine-tune data acquisition equipment at NASA’s Stennis Space Center by adjusting an oscilloscope to capture precise measurements. NASA/Danny Nowlin Syncom Space Services software test engineer Nicholas Payton Karno monitors a lab console at NASA’s Stennis Space Center displaying video footage of an RS-25 engine gimbal test, alongside data acquisition screens showing lab measurements. NASA/Danny Nowlin Just as a steady heartbeat is critical to staying alive, propulsion test data is vital to ensure engines and systems perform flawlessly.
      The accuracy of the data produced during hot fire tests at NASA’s Stennis Space Center near Bay St. Louis, Mississippi, tells the performance story.
      So, when NASA needed a standardized way to collect hot fire data across test facilities, an onsite team created an adaptable software tool to do it.
      “The NASA Data Acquisition System (NDAS) developed at NASA Stennis is a forward-thinking solution,” said David Carver, acting chief of the Office of Test Data and Information Management. “It has unified NASA’s rocket propulsion testing under an adaptable software suite to meet needs with room for future expansion, both within NASA and potentially beyond.”
      Before NDAS, contractors conducting test projects used various proprietary tools to gather performance data, which made cross-collaboration difficult. NDAS takes a one-size-fits-all approach, providing NASA with its own system to ensure consistency.
      “Test teams in the past had to develop their own software tools, but now, they can focus on propulsion testing while the NDAS team focuses on developing the software that collects data,” said Carver.
      A more efficient workflow has followed since the software system is designed to work with any test hardware. It allows engineers to seamlessly work between test areas, even when upgrades have been made and hardware has changed, to support hot fire requirements for the agency and commercial customers.
      With the backing and resources of the NASA Rocket Propulsion Test (RPT) Program Office, a blended team of NASA personnel and contractors began developing NDAS in 2011 as part of the agency’s move to resume control of test operations at NASA Stennis. Commercial entities had conducted the operations on NASA’s behalf for several decades.
      The NASA Stennis team wrote the NDAS software code with modular components that function independently and can be updated to meet the needs of each test facility. The team used LabVIEW, a graphical platform that allows developers to build software visually rather than using traditional text-based code.
      Syncom Space Services software engineer Richard Smith, front, analyzes test results using the NASA Data Acquisition System Displays interface at NASA’s Stennis Space Center while NASA software engineer Brandon Carver actively tests and develops laboratory equipment. NASA/Danny Nowlin NASA engineers, from left to right, Tristan Mooney, Steven Helmstetter Chase Aubry, and Christoffer Barnett-Woods are shown in the E-1 Test Control Center where the NASA Data Acquisition System is utilized for propulsion test activities. NASA/Danny Nowlin NASA engineers Steven Helmstetter, Christoffer Barnett-Woods, and Tristan Mooney perform checkouts on a large data acquisition system for the E-1 Test Stand at NASA’s Stennis Space Center. The data acquisition hardware, which supports testing for E Test Complex commercial customers, is controlled by NASA Data Acquisition System software that allows engineers to view real-time data while troubleshooting hardware configuration.NASA/Danny Nowlin NASA engineers Steven Helmstetter, left, and Tristan Mooney work with the NASA Data Acquisition System in the E-1 Test Control Center, where the system is utilized for propulsion test activities.NASA/Danny Nowlin “These were very good decisions by the original team looking toward the future,” said Joe Lacher, a previous NASA project manager. “LabVIEW was a new language and is now taught in colleges and widely used in industry. Making the program modular made it adaptable.”
      During propulsion tests, the NDAS system captures both high-speed and low-speed sensor data. The raw sensor data is converted into units for both real-time monitoring and post-test analysis.
      During non-test operations, the system monitors the facility and test article systems to help ensure the general health and safety of the facility and personnel.
      “Having quality software for instrumentation and data recording systems is critical and, in recent years, has become increasingly important,” said Tristan Mooney, NASA instrumentation engineer. “Long ago, the systems used less software, or even none at all. Amplifiers were configured with physical knobs, and data was recorded on tape or paper charts. Today, we use computers to configure, display, and store data for nearly everything.”
      Developers demonstrated the new system on the A-2 Test Stand in 2014 for the J-2X engine test project.
      From there, the team rolled it out on the Fred Haise Test Stand (formerly A-1), where it has been used for RS-25 engine testing since 2015. A year later, teams used NDAS on the Thad Cochran Test Stand (formerly B-2) in 2016 to support SLS (Space Launch System) Green Run testing for future Artemis missions.
      One of the project goals for the system is to provide a common user experience to drive consistency across test complexes and centers.
      Kris Mobbs, current NASA project manager for NDAS, said the system “really shined” during the core stage testing. “We ran 24-hour shifts, so we had people from across the test complex working on Green Run,” Mobbs said. “When the different shifts came to work, there was not a big transition needed. Using the software for troubleshooting, getting access to views, and seeing the measurements were very common activities, so the various teams did not have a lot of build-up time to support that test.”
      Following success at the larger test stands, teams started using NDAS in the E Test Complex in 2017, first at the E-2 Test Stand, then on the E-1 and E-3 stands in 2020.
      Growth of the project was “a little overwhelming,” Lacher recalled. The team maintained the software on active stands supporting tests, while also continuing to develop the software for other areas and their many unique requirements.
      Each request for change had to be tracked, implemented into the code, tested in the lab, then deployed and validated on the test stands.
      “This confluence of requirements tested my knowledge of every stand and its uniqueness,” said Lacher. “I had to understand the need, the effort to meet it, and then had to make decisions as to the priorities the team would work on first.”
      Creation of the data system and its ongoing updates have transformed into opportunities for growth among the NASA Stennis teams working together.
      “From a mechanical test operations perspective, NDAS has been a pretty easy system to learn,” said Derek Zacher, NASA test operations engineer. “The developers are responsive to the team’s ideas for improvement, and our experience has consistently improved with the changes that enable us to view our data in new ways.”
      Originally designed to support the RPT office at NASA Stennis, the software is expanding beyond south Mississippi to other test centers, attracting interest from various NASA programs and projects, and garnering attention from government agencies that require reliable and scalable data acquisition. “It can be adopted nearly anywhere, such as aerospace and defense, research and development institutions and more places, where data acquisition systems are needed,” said Mobbs. “It is an ever-evolving solution.”
      Read More Share
      Details
      Last Updated May 08, 2025 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center View the full article
    • By NASA
      One half of NASA’s nearly complete Nancy Grace Roman Space Telescope just passed a lengthy test to ensure it will function properly in the space environment. This milestone keeps Roman well on track for its target launch by May 2027, with the team aiming for as early as fall 2026.
      This photo shows half of the NASA’s Nancy Grace Roman observatory — the outer barrel assembly, deployable aperture cover, and test solar arrays — fully deployed in a thermal chamber at NASA’s Goddard Space Flight Center in Greenbelt, Md., for environmental testing. Credit: NASA/Sydney Rohde “This milestone tees us up to attach the flight solar array sun shield to the outer barrel assembly, and deployable aperture cover, which we’ll begin this month,” said Jack Marshall, who leads integration and testing for these elements at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Then we’ll complete remaining environmental tests for the flight assembly before moving on to connect Roman’s two major assemblies and run the full observatory through testing, and then we’ll be ready to launch!”
      Prior to this thermal testing, technicians integrated Roman’s deployable aperture cover, a visor-like sunshade, to the outer barrel assembly, which will house the telescope and instruments, in January, then added test solar panels in March. They moved this whole structure into the Space Environment Simulator test chamber at NASA Goddard in April.
      There, it was subjected to the hot and cold temperatures it will experience in space. Next, technicians will join Roman’s flight solar panels to the outer barrel assembly and sunshade. Then the structure will undergo a suite of assessments, including a shake test to ensure it can withstand the vibrations experienced during launch.
      This photo captures the installation of the test solar panels for NASA’s Nancy Grace Roman Space Telescope, which took place in March. One panel is lifted in the center of the frame on its way to being attached to the outer barrel assembly at right. The deployable aperture cover is stowed on the front of the outer barrel assembly, and the other half of the observatory — the spacecraft and integrated payload assembly, which consists of the telescope, instrument carrier, and two instruments — appears at the left of the photo.Credit: NASA/Jolearra Tshiteya Meanwhile, Roman’s other major portion — the spacecraft and integrated payload assembly, which consists of the telescope, instrument carrier, and two instruments — will undergo its own shake test, along with additional assessments. Technicians will install the lower instrument sun shade and put this half of the observatory through a thermal vacuum test in the Space Environment Simulator.
      “The test verifies the instruments will remain at stable operating temperatures even while the Sun bakes one side of the observatory and the other is exposed to freezing conditions — all in a vacuum, where heat doesn’t flow as readily as it does through air,” said Jeremy Perkins, an astrophysicist serving as Roman’s observatory integration and test scientist at NASA Goddard. Keeping the instrument temperatures stable ensures their readings will be precise and reliable.
      Technicians are on track to connect Roman’s two major parts in November, resulting in a complete observatory by the end of the year. Following final tests, Roman is expected to ship to the launch site at NASA’s Kennedy Space Center in Florida for launch preparations in summer 2026. Roman remains on schedule for launch by May 2027, with the team aiming for launch as early as fall 2026.
      This infographic shows the two major subsystems that make up NASA’s Nancy Grace Roman Space Telescope. The subsystems are each undergoing testing prior to being joined together this fall.Credit: NASA’s Goddard Space Flight Center To virtually tour an interactive version of the telescope, visit:
      https://roman.gsfc.nasa.gov/interactive
      The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory in Southern California; Caltech/IPAC in Pasadena, California; the Space Telescope Science Institute in Baltimore; and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
      By Ashley Balzer
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      ​​Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center
      301-286-1940
      Share
      Details
      Last Updated May 07, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationNASA Goddard Space Flight Center Related Terms
      Nancy Grace Roman Space Telescope Goddard Space Flight Center Technology Explore More
      6 min read NASA’s Roman Mission Shares Detailed Plans to Scour Skies
      Article 2 weeks ago 6 min read Team Preps to Study Dark Energy via Exploding Stars With NASA’s Roman
      Article 2 months ago 6 min read How NASA’s Roman Space Telescope Will Illuminate Cosmic Dawn
      Article 10 months ago View the full article
    • By NASA
      Expedition 72 Flight Engineers Takuya Onishi from JAXA (Japan Aerospace Exploration Agency) and NASA astronauts Anne McClain, Nichole Ayers, and Don Pettit pose while inside the vestibule between the International Space Station’s Unity module and the Cygnus space freighter.NASA NASA astronaut Nichole Ayers and JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi will answer prerecorded questions about science, technology, engineering, and mathematics from students in Mansfield, Texas, while aboard the International Space Station.
      The 20-minute space-to-Earth call will take place at 10:40 a.m. EDT on Monday, May 5, and can be watched on the NASA STEM YouTube Channel.
      Media interested in covering the event must RSVP no later than 5 p.m., Friday, May 2 by contacting Laura Jobe at laurajobe@misdmail.org or 817-299-6300.
      The event, hosted by Mansfield Independent School District, also will have students present from Brenda Norwood Elementary, Alma Martinez Intermediate, Charlene McKinzey Middle, Jerry Knight and Frontier STEM Academies in Mansfield. This opportunity will allow the students to relate what they have learned about space travel to personal experiences.
      For more than 24 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
      Important research and technology investigations taking place aboard the space station benefit people on Earth and lays the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery.
      See videos of astronauts aboard the space station at:
      https://www.nasa.gov/stemonstation
      -end-
      Gerelle Dodson
      Headquarters, Washington
      202-358-1600
      gerelle.q.dodson@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Apr 30, 2025 LocationNASA Headquarters Related Terms
      Humans in Space International Space Station (ISS) Johnson Space Center NASA Headquarters View the full article
  • Check out these Videos

×
×
  • Create New...