Members Can Post Anonymously On This Site
Antarctica’s secret role in interstellar traffic and trade
-
Similar Topics
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Urban air mobility means a safe and efficient system for vehicles, piloted or not, to move passengers and cargo within a city.NASA As the aviation industry evolves, new air vehicles and operators are entering the airspace. NASA is working to ensure these new diverse set of operations can be safely integrated into the current airspace. The agency is researching how traditional and emerging aircraft operations can efficiently operate in a shared airspace.
NASA’s Air Traffic Management-eXploration (ATM-X) project is a holistic approach to advancing a digital aviation ecosystem through research, development and testing. To accommodate the growing complexity and scale of new operations in Advanced Air Mobility (AAM), ATM-X leverages technologies that contribute to transforming the national airspace, improving airspace access, and making operations safer and more efficient for all users.
ATM-X fosters access to data by enhancing the availability of digital information and predictive services – including flight traffic predictions – for airspace operations.
ATM-X works closely with the Federal Aviation Administration (FAA), commercial partners, industry experts, and stakeholders in evaluating the sustainable impacts of emerging mobility solutions. ATM-X is conducting research to augment current key stakeholders that enable safe operations today such as pilots and air traffic controllers. Through these cooperations, ATM-X researches and validates technological advances in computing, communications, and increasingly automated technologies to support the continued evolution of aviation operations.
ATM-X supports the modernization of today’s air transportation system through a diverse portfolio of core capabilities, which include remotely supervised missions up through high-altitude operations. The four research subprojects under ATM-X work collaboratively to enable a robust transformation of the National Airspace System (NAS).
NASA/Maria Werries Unmanned Aircraft System Traffic Management Beyond-Visual-Line-of Sight (UTM-BVLOS)
UTM BVLOS is supporting the future of aviation by operationalizing UTM for safe use of drones in our everyday lives. UTM BVLOS is part of a new traffic management paradigm called Extensible Traffic Management (xTM) that will use digital information exchange, cooperative operating practices, and automation to provide air traffic management for remotely piloted operations for small UAS beyond an operator’s visual line of sight. This project focuses on enabling operations in a low- altitude airspace, including drone package delivery and public safety operations.
As the FAA works to authorize these types of flights, NASA’s UTM BVLOS team is working with industry to ensure these operations can be routine, safe, and efficient. One such effort is the industry-driven “Key Site Operational Evaluation” out of North Texas, where UTM BVLOS is helping to test UTM tools and services in an operational context.
Digital Information Platform (DIP)
DIP is focused on increasing access to digital information to enable increasingly sustainable and efficient operations for today and future airspace systems. DIP is prototyping a digital service-oriented framework that uses machine learning to provide information, including traffic predictions, weather information, and in-time flight trajectory updates. DIP tests and validates key services for end-to-end trajectory planning and surface operations.
DIP is engaging with the FAA, industry, flight operators, and relevant stakeholders, in a series of Sustainable Flight National Partnership – Operations demonstrations to support the United States Climate Action Plan objective of net-zero emissions by 2050. Through these types of collaborations, DIP tests and validates key services and capabilities for end-to-end trajectory planning and surface operations.
Pathfinding for Airspace with Autonomous Vehicles (PAAV)
PAAV is focused on enabling remotely piloted operations in today’s airspace, which includes assessing increasingly automated capabilities to allow safe operations across all phases of flight.
PAAV is working with key stakeholders, including the FAA, industry standards organizations, and industry partners to develop an ecosystem which helps validate standards, concepts, procedures, and technology. This research will help test and validate a broad range of tools and services that could provide critical information and functions necessary for remotely piloted operations at lower complexity airspace shared with conventional aircrafts. This includes ground-based surveillance to detect and avoid hazards, command and control communications, and relevant weather information, which is critical for safe, seamless, and scalable UAS cargo operations.
NAS Exploratory Concepts & Technologies (NExCT)
Advancements in aircraft design, power, and propulsion systems are enabling high-altitude long-endurance vehicles, such as balloons, airships, and solar aircraft to operate at altitudes of 60,000 feet and above. This airspace is referred to as “Upper Class E” airspace in the United States, or ETM. These advancements open doors to benefits ranging from increased internet coverage, improved disaster response, expanded scientific missions, to even supersonic flight. To accommodate and foster this growth, NExCT is developing a new traffic management concept in this airspace.
NExCT is working with the FAA and industry partners to extend a new concept for safely integrating and scaling air traffic across UTM, UAM, and ETM, collectively referenced as the Extensible Traffic Management (xTM) domain. Together, this research project will enable, test, and validate a common xTM framework that is efficient and safe.
ATM-X
AOSP
Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
4 min read Research Plane Dons New Colors for NASA Hybrid Electric Flight Tests
Article 1 week ago 2 min read NASA Develops Pod to Help Autonomous Aircraft Operators
Article 2 weeks ago 2 min read NASA Composite Manufacturing Initiative Gains Two New Members
Article 3 weeks ago Keep Exploring Discover More Topics From NASA
Missions
Humans In Space
Solar System Exploration
Solar System Overview The solar system has one star, eight planets, five officially named dwarf planets, hundreds of moons, thousands…
Explore NASA’s History
Share
Details
Last Updated Sep 11, 2024 EditorJim BankeContactHillary Smithhillary.smith@nasa.gov Related Terms
Aeronautics Research Mission Directorate Air Traffic Management – Exploration View the full article
-
By Space Force
Lt. Gen. Tony Bauernfeind assumed the role of U.S. Air Force Academy superintendent during an assumption of command ceremony Aug. 2.
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
This image shows an aviation version of a smartphone navigation app that makes suggestions for an aircraft to fly an alternate, more efficient route. The new trajectories are based on information available from NASA’s Digital Information Platform and processed by the Collaborative Departure Digital Rerouting tool.NASA Just like your smartphone navigation app can instantly analyze information from many sources to suggest the best route to follow, a NASA-developed resource is now making data available to help the aviation industry do the same thing.
To assist air traffic managers in keeping airplanes moving efficiently through the skies, information about weather, potential delays, and more is being gathered and processed to support decision making tools for a variety of aviation applications.
Appropriately named the Digital Information Platform (DIP), this living database hosts key data gathered by flight participants such as airlines or drone operators. It will help power additional tools that, among other benefits, can save you travel time.
Ultimately, the aviation industry… and even the flying public, will benefit from what we develop.
Swati Saxena
NASA Aerospace Engineer
“Through DIP we’re also demonstrating how to deliver digital services for aviation users via a modern cloud-based, service-oriented architecture,” said Swati Saxena, DIP project manager at NASA’s Ames Research Center in California.
The intent is not to compete with others. Instead, the hope is that industry will see DIP as a reference they can use in developing and implementing their own platforms and digital services.
“Ultimately, the aviation industry – the Federal Aviation Administration, commercial airlines, flight operators, and even the flying public – will benefit from what we develop,” Saxena said.
The platform and digital services have even more benefits than just saving some time on a journey.
For example, NASA recently collaborated with airlines to demonstrate a traffic management tool that improved traffic flow at select airports, saving thousands of pounds of jet fuel and significantly reducing carbon emissions.
Now, much of the data gathered in collaboration with airlines and integrated on the platform is publicly available. Users who qualify can create a guest account and access DIP data at a new website created by the project.
It’s all part of NASA’s vision for 21st century aviation involving revolutionary next-generation future airspace and safety tools.
Managing Future Air Traffic
During the 2030s and beyond, the skies above the United States are expected to become much busier.
Facing this rising demand, the current National Airspace System – the network of U.S. aviation infrastructure including airports, air navigation facilities, and communications – will be challenged to keep up. DIP represents a key piece of solving that challenge.
NASA’s vision for future airspace and safety involves new technology to create a highly automated, safe, and scalable environment.
What this vision looks like is a flight environment where many types of vehicles and their pilots, as well as air traffic managers, use state-of-the-art automated tools and systems that provide highly detailed and curated information.
These tools leverage new capabilities like machine learning and artificial intelligence to streamline efficiency and handle the increase in traffic expected in the coming decades.
Digital Services Ecosystem in Action
To begin implementing this new vision, our aeronautical innovators are evaluating their platform, DIP, and services at several airports in Texas. This initial stage is a building block for larger such demonstrations in the future.
“These digital services are being used in the live operational environment by our airline partners to improve efficiency of the current airspace operations,” Saxena said. “The tools are currently in use in the Dallas/Fort Worth area and will be deployed in the Houston airspace in 2025.”
The results from these digital tools are already making a difference.
Proven Air Traffic Results
During 2022, a NASA machine learning-based tool named Collaborative Digital Departure Rerouting, designed to improve the flow of air traffic and prevent flight delays, saved more than 24,000 lbs. (10,886 kg.) of fuel by streamlining air traffic in the Dallas area.
If such tools were used across the entire country, the improvements made in efficiency, safety, and sustainability would make a notable difference to the flying public and industry.
“Continued agreements with airlines and the aviation industry led to the creation and expansion of this partnership ecosystem,” Saxena said. “There have been benefits across the board.”
DIP was developed under NASA’s Airspace Operations and Safety Program.
Learn about NASA’s Collaborative Digital Departure Rerouting tool and how it uses information from the Digital Information Platform to provide airlines with routing options similar to how drivers navigate using cellphone apps. About the Author
John Gould
Aeronautics Research Mission DirectorateJohn Gould is a member of NASA Aeronautics' Strategic Communications team at NASA Headquarters in Washington, DC. He is dedicated to public service and NASA’s leading role in scientific exploration. Prior to working for NASA Aeronautics, he was a spaceflight historian and writer, having a lifelong passion for space and aviation.
Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
2 min read NASA Prepares for Air Taxi Passenger Comfort Studies
Article 2 weeks ago 2 min read Hypersonic Technology Project Overview
Article 3 weeks ago 2 min read Hypersonics Technical Challenges
Article 3 weeks ago Keep Exploring Discover More Topics From NASA
Missions
Artemis
Aeronautics STEM
Explore NASA’s History
Share
Details
Last Updated Jul 12, 2024 EditorJim BankeContactJim Bankejim.banke@nasa.gov Related Terms
Aeronautics Aeronautics Research Mission Directorate Air Traffic Management – Exploration Air Traffic Solutions Airspace Operations and Safety Program View the full article
-
By Space Force
Since July 2023, Senior Master Sgt. Brandon Shook has served as Space Operations Command's Intelligence Threat Analysis Division senior enlisted leader and has been pivotal in ensuring that Space Force senior leaders and staff have critical information about adversary capabilities and intentions.
View the full article
-
By European Space Agency
ESA’s EarthCARE satellite, poised to revolutionise our understanding of how clouds and aerosols affect our climate, has been launched. This extraordinary satellite embarked on its journey into space on 29 May at 00:20 CEST (28 May, 15:20 local time) aboard a Falcon 9 rocket from the Vandenberg Space Force Base in California, US.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.