Jump to content

Sentinel-2C joins the Copernicus family in orbit


Recommended Posts

Sentinel-2C takes to the skies

The third Copernicus Sentinel-2 satellite launched today aboard the final Vega rocket from Europe’s Spaceport in French Guiana. Sentinel-2C will continue providing high-resolution data that is essential to Copernicus – Europe’s world leading Earth observation programme.

Sentinel-2C launched into orbit on 5 September at 03:50 CEST (4 September 22:50 local time) and separated from the Vega rocket at approximately 04:48 CEST.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Tiny satellites, also known as CubeSats, are pictured after being deployed into Earth orbit from a small satellite orbital deployer on the outside of the International Space Station’s Kibo laboratory module. The CubeSats were delivered aboard the Northrop Grumman Cygnus space freighter and will serve a variety of educational and research purposes for public and private organizations around the world.
      Image Credit: NASA/Tracy Dyson
      View the full article
    • By European Space Agency
      The two new Galileo satellites launched in April have entered service, completing the second of three constellation planes. With every addition to the constellation, the precision, availability and robustness of the Galileo signal is improved. The next launch is planned in the coming weeks and the remaining six Galileo First Generation satellites will join the constellation in the next years.
      View the full article
    • By NASA
      A waxing gibbous moon rises over the Indian Ocean as the International Space Station orbited 266 miles above.Credit: NASA As NASA and its partners continue to conduct groundbreaking research aboard the International Space Station, the agency announced Monday it is seeking U.S. industry, academia, international partners, and other stakeholders’ feedback on newly developed goals and objectives that will help guide the next generation of human presence in low Earth orbit.
      “From the very beginning, NASA’s flagship human spaceflight programs have built upon each other, expanding our knowledge and experience of humans living and working in space,” said NASA Deputy Administrator Pam Melroy. “As commercial industry is constructing new human-enabled platforms for low Earth orbit, NASA must answer the question: what should our goals and objectives be to advance our future science and exploration missions?”
      NASA published draft high-level goals and objectives outlining 42 key points in six main areas: science, exploration-enabling research and technology development, commercial low Earth orbit infrastructure, operations, international cooperation, and workforce and engagement.
      “Feedback is essential for shaping our long-term microgravity research and development activities,” said Ken Bowersox, associate administrator, Space Operations Mission Directorate at NASA Headquarters in Washington. “We are committed to refining our objectives with input from both within NASA and external partners, ensuring alignment with industry and international goals. After reviewing feedback, we will finalize our strategy later this year.”
      The agency will conduct two invite-only workshops in September to discuss feedback on the draft goals and objectives. The first workshop is with international partners, and the second will engage U.S. industry and academic representatives.
      NASA employees also are invited to provide input through internal agency channels. This approach reflects NASA’s commitment to harnessing diverse perspectives to navigate the rapidly evolving low Earth orbit environment.
      “Organizations are increasingly recognizing the transformative benefits of space, with both governments and commercial activities leveraging the International Space Station as a testbed,” said Robyn Gatens, International Space Station director and acting director of commercial spaceflight at NASA Headquarters. “By developing a comprehensive strategy, NASA is looking to the next chapter of U.S. human space exploration to help shape the agency’s future in microgravity for the benefit of all.”
      Stakeholders may submit comments by close of business on Friday, Sept. 27 to:
      https://www.leomicrogravitystrategy.org/
      -end-
      Amber Jacobson
      Headquarters, Washington
      202-358-1600
      amber.c.jacobson@nasa.gov
      View the full article
    • By NASA
      Envisioning the Next Generation of Human Presence in Low Earth Orbit
    • By NASA
      NASA’s LRO (Lunar Reconnaissance Orbiter) has twice transmitted a laser pulse to a cookie-sized retroreflector aboard JAXA’s (Japan Aerospace Exploration Agency) SLIM lander on the Moon and received a return signal.
      As LRO passed 44 miles above SLIM (Smart Lander for Investigating Moon) during two successive orbits on May 24, 2024, it pinged the lander with its laser altimeter instrument as it had done eight times before. But, on these two attempts, the signal bounced back to LRO’s detector.
      This was an important accomplishment for NASA because the device is not in an optimal position. Retroreflectors are typically secured to the top of landers, giving LRO a 120-degree range of angles to aim toward when sending laser pulses to the approximate location of a retroreflector. However, the SLIM lander had settled on the surface with its top facing sideways, limiting LRO’s range.
      To boost the chances of reaching their target, the LRO team worked with JAXA to determine the exact location and orientation of SLIM. Then, NASA engineers predicted when LRO’s orbit trajectory would bring it to coordinates that would give it the best chance of reaching SLIM’s retroreflector with the laser beams.
      SLIM on the lunar surface captured by the LEV-2 (SORA-Q) rover. “LRO’s altimeter wasn’t built for this type of application, so the chances of pinpointing a tiny retroreflector on the Moon’s surface are already low,” said Xiaoli Sun, who led the team that built SLIM’s retroreflector at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, as part of a partnership between NASA and JAXA.
      “For the LRO team to have reached a retroreflector that faces sideways, instead of the sky, shows that these little devices are incredibly resilient,” Sun said.
      SLIM touched down on the Moon’s surface on Jan. 20. The retroreflector that hitched a ride with the lander, called a Laser Retroreflector Array, is one of the six NASA has sent to the Moon aboard private and public landers, and the second to bounce signal back to LRO’s altimeter.
      The first time a laser beam was transmitted from LRO to a NASA retroreflector and back was on Dec. 12, 2023, when LRO pinged ISRO’s (Indian Space Research Organisation) Vikram lander. LRO has since exchanged laser pings with Vikram three more times.
      NASA’s retroreflector has eight quartz corner-cube prisms set into a dome-shaped aluminum frame that is 2 inches wide. With no power or maintenance required, retroreflectors can last on the Moon’s surface for decades and thus provide reliable beacons for future missions.
      NASA’s Laser Retroreflector Array installed on JAXA’s SLIM lander before launch. The retroreflectors could guide Artemis astronauts to the surface in the dark, for example, or mark the locations of spacecraft already on the surface to help astronauts and uncrewed spacecraft land near them.
      LRO’s laser altimeter, the only laser instrument orbiting the Moon for now, was designed to map the Moon’s topography to prepare for missions to the surface — not to point to within 1/100th of a degree of a retroreflector, which is what LRO engineers are trying to do with every ping.
      LRO is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for the Science Mission Directorate at NASA Headquarters in Washington. Launched on June 18, 2009, LRO has collected a treasure trove of data with its seven powerful instruments, making an invaluable contribution to our knowledge about the Moon. NASA is returning to the Moon with commercial and international partners to expand human presence in space and bring back new knowledge and opportunities.

      NASA’s LRO Spots Japan’s Moon Lander 


      New Evidence Adds to Findings Hinting at Network of Caves on Moon


      NASA/JAXA’s XRISM Mission Captures Unmatched Data With Just 36 Pixels


      By Lonnie Shekhtman
      NASA’s Goddard Space Flight Center, Greenbelt, Md.                  
       
      Media Contact:
      Nancy Neal Jones
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Jul 29, 2024 Related Terms
      Artemis Earth’s Moon Goddard Space Flight Center Lunar Discovery & Exploration Program Lunar Reconnaissance Orbiter (LRO) Planetary Science Division Science Mission Directorate The Solar System View the full article
  • Check out these Videos

×
×
  • Create New...