Jump to content

September’s Night Sky Notes: Marvelous Moons


NASA

Recommended Posts

  • Publishers
3 Min Read

September’s Night Sky Notes: Marvelous Moons

The four largest moons of Jupiter ranging in color from yellowish brown to dark gray.
Jupiter’s largest moons, from left to right: Io, Europa, Ganymede, Callisto.
Credits:
NASA

by Kat Troche of the Astronomical Society of the Pacific

September brings the gas giants Jupiter and Saturn back into view, along with their satellites. And while we organize celebrations to observe our own Moon this month, be sure to grab a telescope or binoculars to see other moons within our Solar System! We recommend observing these moons (and planets!) when they are at their highest in the night sky, to get the best possible unobstructed views.

The More the Merrier

As of September 2024, the ringed planet Saturn has 146 identified moons in its orbit. These celestial bodies range in size; the smallest being a few hundred feet across, to Titan, the second largest moon in our solar system.

saturn-and-moons.jpeg?w=1444
The Saturnian system along with various moons around the planet Saturn: Iapetus, Titan, Enceladus, Rhea, Tethys, and Dione.
Stellarium Web

Even at nearly 900 million miles away, Titan can be easily spotted next to Saturn with a 4-inch telescope, under urban and suburban skies, due to its sheer size. With an atmosphere of mostly nitrogen with traces of hydrogen and methane, Titan was briefly explored in 2005 with the Huygens probe as part of the Cassini-Huygens mission, providing more information about the surface of Titan. NASA’s mission Dragonfly is set to explore the surface of Titan in the 2030s.

A half circle, with turquoise cracks across the left side its pale blue surface. Craters are shown along its middle and lower right sides.
Enceladus is an icy world much like Hoth, except that it has an ocean under its frozen crust. Astronomers believe this moon of Saturn may be a good candidate for having extraterrestrial life beneath its surface.
NASA/ESA/JPL-Caltech/Space Science Institute

Saturn’s moon Enceladus was also explored by the Cassini mission, revealing plumes of ice that erupt from below the surface, adding to the brilliance of Saturn’s rings. Much like our own Moon, Enceladus remains tidally locked with Saturn, presenting the same side towards its host planet at all times.

The Galilean Gang

The King of the Planets might not have the most moons, but four of Jupiter’s 95 moons are definitely the easiest to see with a small pair of binoculars or a small telescope because they form a clear line. The Galilean Moons – Ganymede, Callisto, Io, and Europa – were first discovered in 1610 and they continue to amaze stargazers across the globe.

Simulation of striped Jupiter and its four largest moons: Ganymede, Callisto, Io, and Europa
The Jovian system: Europa, Io, Ganymede, and Callisto.
Stellarium Web
  • Ganymede: largest moon in our solar system, and larger than the planet Mercury, Ganymede has its own magnetic field and a possible saltwater ocean beneath the surface.
  • Callisto: this heavily cratered moon is the third largest in our solar system. Although Callisto is the furthest away of the Galilean moons, it only takes 17 days to complete an orbit around Jupiter.
  • Io: the closest moon and third largest in this system, Io is an extremely active world, due to the push and pull of Jupiter’s gravity. The volcanic activity of this rocky world is so intense that it can be seen from some of the largest telescopes here on Earth.
  • Europa: Jupiter’s smallest moon also happens to be the strongest candidate for a liquid ocean beneath the surface. NASA’s Europa Clipper is set to launch October 2024 and will determine if this moon has conditions suitable to support life. Want to learn more? Rewatch the July 2023 Night Sky Network webinar about Europa Clipper here.

Be sure to celebrate International Observe the Moon Night here on Earth September 14, 2024, leading up to the super full moon on September 17th! You can learn more about supermoons in our mid-month article on the Night Sky Network page!

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Learn Home Eclipse Soundscapes AudioMoth… Audio Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Stories Science Activation Highlights Citizen Science   3 min read
      Eclipse Soundscapes AudioMoth Donations Will Study Nature at Night
      During the April 8, 2024 total solar eclipse, approximately 770 AudioMoth recording devices were used to capture sound data as part of the Eclipse Soundscapes Project — a multisensory participatory science (also known as “citizen science”) project that is studying how eclipses impact life on Earth. Following the eclipse, participants had the option to keep or send back their AudioMoth device for donation. Fifty-two AudioMoths were sent back to Eclipse Soundscapes (ES) so that ES could donate them to projects or communities for future scientific usage. Eighteen of those AudioMoths have been donated to Dark Sky Missouri, an initiative to protect our night skies and the creatures that depend on them. On Wednesday, August 21, 2024, at 3 p.m. EST, Eclipse Soundscapes hosted a webinar with Dark Sky Missouri founder Don Ficken to learn more about how these AudioMoths will contribute to future participatory science.
      Don Ficken is a Missouri Master Naturalist and amateur astronomer who found the Eclipse Soundscapes Project through SciStarter, an organization that helps bring together millions of curious and concerned people in the world to engage in real-world research questions through citizen science. He participated as a Data Collector in 2024. “[The Eclipse Soundscapes Project] opened up a door for me because I never really thought about sound acoustics in this way,” Ficken said.
      It occurred to Ficken that acoustics could help bolster Dark Sky Missouri’s efforts to study and conserve night time wildlife. One of these efforts, Lights Out Heartland, encourages homeowners and businesses to minimize artificial light usage in order to protect migrating birds from collisions due to disorienting bright lights. Ficken hopes to use the AudioMoths to capture the birds’ nocturnal flight calls as they fly over locations like the Gateway Arch, Shaw Nature Reserve, and Missouri Botanical Gardens.
      Dark Sky Missouri also hopes to take more general surveys of nature at night by placing AudioMoths in parks and natural areas. Even though parks are not typically open or staffed at night, the AudioMoths could help map the locations and movements of wildlife, creating talking points and learning opportunities for staff and visitors alike.
      Both initiatives will be piloted during the fall bird migration, with the goal of developing a framework for an expanded long term project. While there are no opportunities for the general public to get involved in the projects just yet, Ficken says participatory scientists can benefit from the multisensory methods employed in the Eclipse Soundscapes Project. “I think that the thing that they should think about is really the door that acoustics would be opening for them,” he said. “In other words, you don’t have to just visually look at daytime. Think about sound. Think about night.” For more information on how Dark Sky Missouri will use the AudioMoth recorders, read the Eclipse Soundscapes blog post.
      The Eclipse Soundscapes Project is supported by NASA under cooperative agreement award number 80NSSC21M0008 and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn

      Dark Sky Missouri will use the donated Eclipse Soundscapes AudioMoths to study bird calls and behavior at night. Share








      Details
      Last Updated Aug 28, 2024 Editor NASA Science Editorial Team Related Terms
      2024 Solar Eclipse Astrophysics Audio Citizen Science Earth Science Heliophysics Planetary Science Science Activation Explore More
      2 min read Hubble Traces Star Formation in a Nearby Nebula


      Article


      2 hours ago
      2 min read Hubble Pinpoints a Dim, Starry Mini-galaxy


      Article


      1 day ago
      5 min read Webb Finds Early Galaxies Weren’t Too Big for Their Britches After All


      Article


      2 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By European Space Agency
      On 8 September 2024, the first of four Cluster satellites will return home and burn up in the Earth’s atmosphere in an uncontrolled ‘targeted reentry’ over a remote area of the South Pacific Ocean. 
      In the nearly 70 years of spaceflight about 10 000 intact satellites and rocket bodies have reentered the atmosphere. Yet we still lack a clear view on what actually happens during a reentry. 
      An airborne observation experiment will now attempt to witness the ‘Salsa’ (Cluster 2) reentry. Scientists onboard a small plane will try to collect rare data on how and when a satellite breaks up, which can be used to make satellite reentries safer and more sustainable in the future.
      View the full article
    • By NASA
      4 min read
      Super Blue Moons: Your Questions Answered
      Moonrise over the Syr Darya river, Sunday, Nov. 13, 2016, Baikonur, Kazakhstan. NASA/Bill Ingalls A trifecta of labels is being applied to the Moon of Aug. 19, 2024. It’s a full moon, a supermoon, and finally a blue moon. You may hear it referred to as a super blue moon as a result. It sounds exciting, but what does that really mean? We’ve got you covered.
      What is a supermoon?
      The Moon travels around our planet in an elliptical orbit, or an elongated circle, with Earth closer to one side of the ellipse. Each month, the Moon passes through the point closest to Earth (perigee) and the point farthest from Earth (apogee). When the Moon is at or near its closest point to Earth at the same time as it is full, it is called a “supermoon.” During this event, because the full moon is a little bit closer to us than usual, it appears especially large and bright in the sky.
      Because the Moon’s orbit wobbles and differs depending on where the Sun and Earth are in their orbits, the exact distance of these closest and furthest points varies. But the Moon can look up to 14 percent bigger at perigee than apogee.
      This animation shows the difference between a Moon at its closest point to Earth, when supermoons occur, and at its farthest. Distance to apogee and perigee vary by event. Credit: NASA/JPL-Caltech OK, so what is a blue moon?
      A monthly blue moon occurs when we see the full moon twice in a single month. The Moon’s cycle is 29.5 days, so just a bit shorter than the average length of a calendar month. Eventually that gap results in a full moon happening at the beginning of a month with enough days still remaining for another full cycle ― so a second full moon in the same month. In other words, a full moon that happens on the 1st or 2nd of a month will probably be followed by a second full moon on the 30th or 31st. This happens every two to three years.
      A seasonal blue moon occurs when there are four full moons in a single season (spring, summer, fall and winter) instead of the usual three. The third moon in this lineup is a blue moon. This Aug. 19 moon is a seasonal blue moon.
      Will the Moon be blue?
      No, that’s just the term for two full moons in a month, or the third full moon in a season with four.
      Is the Moon ever blue?
      On rare occasions, tiny particles in the air ― typically of smoke or dust ― can scatter away red wavelengths of light, causing the Moon to appear blue.
      Will this Moon be bigger and more “super?”
      You probably won’t notice a big difference in size. When the Moon is closest to Earth (a “supermoon”), it can look up to 14 percent bigger than when it’s farthest from Earth. This is similar to the size difference between a quarter and a nickel. Because the Moon will be close to us in its orbit, it will appear a bit brighter than usual.
      Image Before/After Do blue moons and supermoons always occur together?
      No. The term “supermoon” is used to describe a full Moon that occurs within a day or so of perigee, so they happen three to four times a year. About 25 percent of all full moons are supermoons, but only 6 percent of full moons are blue moons (seasonal and monthly). The time between super blue moons is quite irregular ― it can be as much as 20 years ― but in general, 10 years is the average. However, if you like to celebrate both seasonal and monthly blue moons, the gap is closer to five years.
      Monthly blue moons always occur in the last two or three days of the month. A monthly blue moon in January is usually followed by another one in March of the same year. And in fact, the next monthly super blue moons will occur as a pair, in January and March 2037. Seasonal blue moons always occur almost exactly one month before an equinox or a solstice. The next seasonal blue moon will be on Aug. 21, 2032.
      So if it’s not blue and not super-sized, is this worth checking out?
      Hey, it’s always a good time to look at the Moon! Try our Daily Moon Guide to see if you can locate some of our recommended daily Moon sights.
      Share








      Details
      Last Updated Aug 19, 2024 Related Terms
      Earth’s Moon Skywatching Explore More
      4 min read The Summer Triangle’s Hidden Treasures
      With the Summer Triangle high in the sky, it’s a great time to lie back,…


      Article


      4 days ago
      2 min read Solar Eclipse Data Story Helps the Public Visualize the April 2024 Total Eclipse


      Article


      5 days ago
      20 min read The Next Full Moon is a Supermoon Blue Moon
      The Next Full Moon is a Supermoon, a Blue Moon; the Sturgeon Moon; the Red,…


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By European Space Agency
      ESA’s star-surveying Gaia mission has again proven to be a formidable asteroid explorer, spotting potential moons around more than 350 asteroids not known to have a companion.
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This artist’s concept shows how NASA’s Curiosity Mars rover was lowered to the planet’s surface using the sky crane maneuver.NASA / JPL-Caltech The rocket-powered descent stage that lowered NASA’s Curiosity onto the Martian surface is guided over the rover by technicians at the agency’s Kennedy Space Center in September 2011, two months before the mission’s launch. NASA/Kim Shiflett Twelve years ago, NASA landed its six-wheeled science lab using a daring new technology that lowers the rover using a robotic jetpack.
      NASA’s Curiosity rover mission is celebrating a dozen years on the Red Planet, where the six-wheeled scientist continues to make big discoveries as it inches up the foothills of a Martian mountain. Just landing successfully on Mars is a feat, but the Curiosity mission went several steps further on Aug. 5, 2012, touching down with a bold new technique: the sky crane maneuver.
      A swooping robotic jetpack delivered Curiosity to its landing area and lowered it to the surface with nylon ropes, then cut the ropes and flew off to conduct a controlled crash landing safely out of range of the rover.
      Of course, all of this was out of view for Curiosity’s engineering team, which sat in mission control at NASA’s Jet Propulsion Laboratory in Southern California, waiting for seven agonizing minutes before erupting in joy when they got the signal that the rover landed successfully.
      Encased in its aeroshell, NASA’s Curiosity rover descended through the Martian atmosphere on a parachute on Aug. 5, 2012. The scene was captured from far above by the High Resolution Imaging Science Experiment (HiRISE) camera aboard NASA’s Mars Reconnaissance Orbiter.NASA/JPL-Caltech/University of Arizona This was one of the first images sent back by NASA’s Curiosity Mars rover after landing on Aug. 5, 2012. It was taken by the one of the hazard-avoidance camera on the rover’s left-rear side.NASA/JPL-Caltech The sky crane maneuver was born of necessity: Curiosity was too big and heavy to land as its predecessors had — encased in airbags that bounced across the Martian surface. The technique also added more precision, leading to a smaller landing ellipse.
      During the February 2021 landing of Perseverance, NASA’s newest Mars rover, the sky crane technology was even more precise: The addition of something called terrain relative navigation enabled the SUV-size rover to touch down safely in an ancient lake bed riddled with rocks and craters.
      Watch as NASA’s Perseverance rover lands on Mars in 2021 with the same sky crane maneuver Curiosity used in 2012.
      Credit: NASA/JPL-Caltech Evolution of a Mars Landing
      JPL has been involved in NASA’s Mars landings since 1976, when the lab worked with the agency’s Langley Research Center in Hampton, Virginia, on the two stationary Viking landers, which touched down using expensive, throttled descent engines.
      How We Land on Mars For the 1997 landing of the Mars Pathfinder mission, JPL proposed something new: As the lander dangled from a parachute, a cluster of giant airbags would inflate around it. Then three retrorockets halfway between the airbags and the parachute would bring the spacecraft to a halt above the surface, and the airbag-encased spacecraft would drop roughly 66 feet (20 meters) down to Mars, bouncing numerous times — sometimes as high as 50 feet (15 meters) — before coming to rest.
      The entry, descent, and landing team for NASA’s Curiosity Mars rover celebrates the spacecraft’s touchdown on Aug. 5, 2012. Al Chen, who was part of the team, is at right.Curiosity Landing Team Celebrates It worked so well that NASA used the same technique to land the Spirit and Opportunity rovers in 2004. But that time, there were only a few locations on Mars where engineers felt confident the spacecraft wouldn’t encounter a landscape feature that could puncture the airbags or send the bundle rolling uncontrollably downhill.
      “We barely found three places on Mars that we could safely consider,” said JPL’s Al Chen, who had critical roles on the entry, descent, and landing teams for both Curiosity and Perseverance.
      It also became clear that airbags simply weren’t feasible for a rover as big and heavy as Curiosity. If NASA wanted to land bigger spacecraft in more scientifically exciting locations, better technology was needed.
      Rover on a Rope
      In early 2000, engineers began playing with the concept of a “smart” landing system. New kinds of radars had become available to provide real-time velocity readings — information that could help spacecraft control their descent. A new type of engine could be used to nudge the spacecraft toward specific locations or even provide some lift, directing it away from a hazard. The sky crane maneuver was taking shape.
      JPL Fellow Rob Manning worked on the initial concept in February 2000, and he remembers the reception it got when people saw that it put the jetpack above the rover rather than below it.
      “People were confused by that,” he said. “They assumed propulsion would always be below you, like you see in old science fiction with a rocket touching down on a planet.”
      Manning and colleagues wanted to put as much distance as possible between the ground and those thrusters. Besides stirring up debris, a lander’s thrusters could dig a hole that a rover wouldn’t be able to drive out of. And while past missions had used a lander that housed the rovers and extended a ramp for them to roll down, putting thrusters above the rover meant its wheels could touch down directly on the surface, effectively acting as landing gear and saving the extra weight of bringing along a landing platform.
      But engineers were unsure how to suspend a large rover from ropes without it swinging uncontrollably. Looking at how the problem had been solved for huge cargo helicopters on Earth (called sky cranes), they realized Curiosity’s jetpack needed to be able to sense the swinging and control it.
      “All of that new technology gives you a fighting chance to get to the right place on the surface,” said Chen.
      Best of all, the concept could be repurposed for larger spacecraft — not only on Mars, but elsewhere in the solar system. “In the future, if you wanted a payload delivery service, you could easily use that architecture to lower to the surface of the Moon or elsewhere without ever touching the ground,” said Manning.
      More About the Mission
      Curiosity was built by NASA’s Jet Propulsion Laboratory, which is managed by Caltech in Pasadena, California. JPL leads the mission on behalf of NASA’s Science Mission Directorate in Washington.
      For more about Curiosity, visit:
      science.nasa.gov/mission/msl-curiosity
      News Media Contacts
      Andrew Good
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-2433
      andrew.c.good@jpl.nasa.gov
      Karen Fox / Alana Johnson
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov
      2024-104
      Share
      Details
      Last Updated Aug 07, 2024 Related Terms
      Curiosity (Rover) Jet Propulsion Laboratory Mars Mars Science Laboratory (MSL) Radioisotope Power Systems (RPS) Explore More
      2 min read Tech Today: Flipping NASA Tech and Sticking the Landing 
      NASA tech adds gecko grip to phone accessory
      Article 1 day ago 6 min read Quantum Scale Sensors used to Measure Planetary Scale Magnetic Fields
      Magnetic fields are everywhere in our solar system. They originate from the Sun, planets, and…
      Article 1 day ago 4 min read AstroViz: Iconic Pillars of Creation Star in NASA’s New 3D Visualization
      NASA’s Universe of Learning – a partnership among the Space Telescope Science Institute (STScI), Caltech/IPAC,…
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...