Jump to content

NASA’s SpaceX Crew-9 Changes Ahead of September Launch


NASA

Recommended Posts

  • Publishers
updated-nasas-spacex-crew-9-image.png?w=
Portraits of NASA astronaut Nick Hague and Roscosmos cosmonaut Aleksandr Gorbunov. (Credit: NASA)

NASA astronaut Nick Hague and Roscosmos cosmonaut Aleksandr Gorbunov will launch no earlier than Tuesday, Sept. 24, on the agency’s SpaceX Crew-9 mission to the International Space Station. NASA astronauts Zena Cardman and Stephanie Wilson, previously announced as crewmates, are eligible for reassignment on a future mission. 

Hague and Gorbunov will fly to the space station as commander and pilot, respectively, as part of a two-crew member flight aboard a SpaceX Dragon.

The updated crew complement follows NASA’s decision to return the agency’s Boeing Crew Flight Test uncrewed and launch Crew-9 with two unoccupied seats. NASA astronauts Butch Wilmore and Suni Williams, who launched aboard the Starliner spacecraft in June, will fly home with Hague and Gorbunov in February 2025.

The decision to fly Hague was made by NASA chief astronaut Joe Acaba at the agency’s Johnson Space Center in Houston. Acaba had to balance flying a NASA crew member with previous spaceflight experience to command the flight, while ensuring NASA maintains an integrated crew with a Roscosmos cosmonaut who can operate their critical systems for continued, safe station operations.

“While we’ve changed crew before for a variety of reasons, downsizing crew for this flight was another tough decision to adjust to given that the crew has trained as a crew of four,” said Acaba. “I have the utmost confidence in all our crew, who have been excellent throughout training for the mission. Zena and Stephanie will continue to assist their crewmates ahead of launch, and they exemplify what it means to be a professional astronaut.”

The agency will share reassignment details for Cardman and Wilson when available.

“I am deeply proud of our entire crew,” said Cardman, “and I am confident Nick and Alex will step into their roles with excellence. All four of us remain dedicated to the success of this mission, and Stephanie and I look forward to flying when the time is right.” 

Wilson added, “I know Nick and Alex will do a great job with their work aboard the International Space Station as part of Expedition 72.”

With 203 days logged in space, this will be Hague’s third launch and second mission to the orbiting laboratory. During his first launch in March 2018, Hague and his crewmate, Roscosmos’ Alexey Ovchinin, experienced a rocket booster failure, resulting in an in-flight, post-launch abort, ballistic re-entry, and safe landing in their Soyuz MS-10 spacecraft. Five months later, Hague launched aboard Soyuz MS-12 and served as a flight engineer aboard the space station during Expeditions 59 and 60. Hague conducted three spacewalks to upgrade space station power systems and install a docking adapter for commercial spacecraft. An active-duty colonel in the U.S. Space Force, Hague completed a developmental rotation at the Defense Department, and served as the Space Force’s director of test and evaluation from 2020 to 2022. In August 2022, Hague resumed duties at NASA, working on the Boeing Starliner Program until this flight assignment. Follow @astrohague on X and Instagram.

This will be Gorbunov’s first trip to space and the station. Born in Zheleznogorsk, Kursk region, Russia, he studied engineering with qualifications in spacecraft and upper stages from the Moscow Aviation Institute. Gorbunov graduated from the military department with a specialty in operating and repairing aircraft, helicopters, and aircraft engines. Before his selection as a cosmonaut in 2018, he worked as an engineer for Rocket Space Corp. Energia and supported cargo spacecraft launches from the Baikonur Cosmodrome.

Hague and Gorbonov will become members of the Expedition 72 crew aboard the station. They will join Wilmore, Williams, fellow NASA astronaut Don Pettit, and Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner conducting scientific research and maintenance activities into the station’s 24th year of continuous human presence.

Learn more about International Space Station research and operations at:

https://www.nasa.gov/station

-end-

Josh Finch / Jimi Russell
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov / james.j.russell@nasa.gov

 Courtney Beasley
Johnson Space Center, Houston
281-483-5111
courtney.m.beasley@nasa.gov

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The International Space Station is pictured from the SpaceX Crew Dragon Endeavour during a fly around.NASA NASA astronaut Nick Hague and Roscosmos cosmonaut Aleksandr Gorbunov are headed to the International Space Station for the agency’s SpaceX Crew-9 mission in September. Once on station, these crew members will support scientific investigations that include studies of blood clotting, effects of moisture on plants grown in space, and vision changes in astronauts.

      Here are details on some of the work scheduled during the Crew-9 expedition:

      Blood cell development in space
      Megakaryocytes Orbiting in Outer Space and Near Earth (MeF1) investigates how environmental conditions affect the development and function of megakaryocytes and platelets. Megakaryocytes, large cells found in bone marrow, and platelets, pieces of these cells, play important roles in blood clotting and immune response.

      “Understanding the development and function of megakaryocytes and platelets during long-duration spaceflight is crucial to safeguarding the health of astronauts,” said Hansjorg Schwertz, principal investigator, at the University of Utah. “Sending megakaryocyte cell cultures into space offers a unique opportunity to explore their intricate differentiation process. Microgravity also may impact other blood cells, so the insights we gain are likely to enhance our overall comprehension of how spaceflight influences blood cell production.”

      Results could provide critical knowledge about the risks of changes in inflammation, immune responses, and clot formation in spaceflight and on the ground.
      Scanning electron-microscopy image of human platelets prior to launch to the International Space Station.University of Utah/Megakaryocytes PI Team Patches for NICER
      The Neutron Star Interior Composition Explorer (NICER) telescope on the exterior of the space station measures X-rays emitted by neutron stars and other cosmic objects to help answer questions about matter and gravity.

      In May 2023, NICER developed a “light leak” that allows sunlight to interfere with daytime measurements. Special patches designed to cover some of the damage will be installed during a future spacewalk, returning the instrument to around-the-clock operation.

      “This will be the fourth science observatory and first X-ray telescope in orbit to be repaired by astronauts,” said principal investigator Keith Gendreau at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “In just a year, we diagnosed the problem, designed and tested a solution, and delivered it for launch. The space station team — from managers and safety experts to engineers and astronauts — helped us make it happen. We’re looking forward to getting back to normal science operations.”
      This view shows NICER’s 56 X-ray concentrators. Astronauts plan to cover some of them with special patches on a future spacewalk. NASA Vitamins for vision
      Some astronauts experience vision changes, a condition called Spaceflight-Associated Neuro-ocular Syndrome. The B Complex investigation tests whether a daily B vitamin supplement can prevent or mitigate this problem and assesses how genetics may influence individual response.

      “We still do not know exactly what causes this syndrome, and not everyone gets it,” said Sara Zwart, principal investigator, at the University of Texas Medical Branch, Houston. “It is likely many factors, and biological variations that make some astronauts more susceptible than others.”

      One such variation could be related to a metabolic pathway that requires B vitamins to function properly. Inefficiencies in this pathway can affect the inner lining of blood vessels, resulting in leaks that may contribute to vision changes. Providing B vitamins known to affect blood vessel function positively could minimize issues in genetically at-risk astronauts.

      “The concept of this study is based on 13 years of flight and ground research,” Zwart said. “We are excited to finally flight test a low-risk countermeasure that could mitigate the risk on future missions, including those to Mars.”
      NASA astronaut Mark Vande Hei conducts a vision exam on the International Space StationNASA Watering the space garden
      As people travel farther from Earth for longer, growing food becomes increasingly important. Scientists conducted many plant growth experiments on the space station using its Veggie hardware, including Veg-01B, which demonstrated that ‘Outredgeous’ red romaine lettuce is suitable for crop production in space.

      Plant Habitat-07 uses this lettuce to examine how moisture conditions affect the nutritional quality and microbial safety of plants. The Advanced Plant Habitat controls humidity, temperature, air, light, and soil moisture, creating the precise conditions needed for the experiment.

      Using a plant known to grow well in space removes a challenging variable from the equation, explained Chad Vanden Bosch, principal investigator at Redwire, and this lettuce also has been proven to be safe to consume when grown in space.

      “For crews building a base on the Moon or Mars, tending to plants may be low on their list of responsibilities, so plant growth systems need to be automated,” Bosch said. “Such systems may not always provide the perfect growing conditions, though, so we need to know if plants grown in suboptimal conditions are safe to consume.”
      This preflight image shows lettuce grown under control (left) and flood (right) moisture treatments. Plant Habitat-07 team Melissa Gaskill
      International Space Station Research Communications Team
      NASA’s Johnson Space Center
      Search this database of scientific experiments to learn more about those mentioned in this article.
      Keep Exploring Discover More Topics
      Latest News from Space Station Research
      Space Station Research and Technology
      Station Benefits for Humanity
      Humans In Space
      View the full article
    • By Amazing Space
      SpaceX Polaris Dawn SpaceWalk
    • By NASA
      22 Min Read The Marshall Star for September 11, 2024
      Starship Super Heavy Breezes Through Wind Tunnel Testing
      NASA and its industry partners continue to make progress toward Artemis III and beyond, the first crewed lunar landing missions under the agency’s Artemis campaign. SpaceX, the commercial Human Landing System (HLS) provider for Artemis III and Artemis IV, recently tested a 1.2% scale model of the Super Heavy rocket, or booster, in the transonic Unitary Plan Wind Tunnel at NASA’s Ames Research Center. The Super Heavy rocket will launch the Starship human landing system to the Moon as part of Artemis.
      A 1.2% scale model of the Super Heavy rocket that will launch the Starship human landing system to the Moon for future crewed Artemis missions was recently tested at NASA’s Ames Research Center’s transonic wind tunnel, providing valuable information on vehicle stability when re-entering Earth’s atmosphere.NASA During the tests, the wind tunnel forced an air stream at the Super Heavy scale model at high speeds, mimicking the air resistance and flow the booster experiences during flight. The wind tunnel subjected the Super Heavy model, affixed with pressure-measuring sensors, to wind speeds ranging from Mach .7, or about 537 miles per hour, to Mach 1.4, or about 1,074 miles per hour. Mach 1 is the speed that sound waves travel, or 761 miles per hour, at sea level.
      Engineers then measured how Super Heavy model responded to the simulated flight conditions, observing its stability, aerodynamic performance, and more. Engineers used the data to update flight software for flight 3 of Super Heavy and Starship and to refine the exterior design of future versions of the booster. The testing lasted about two weeks and took place earlier in 2024.
      Four grid fins on the Super Heavy rocket help stabilize and control the rocket as it re-enters Earth’s atmosphere after launching Starship to a lunar trajectory. Engineers tested the effects of various aerodynamic conditions on several grid fin configurations during wind tunnel testing.NASA After Super Heavy completes its ascent and separation from Starship HLS on its journey to the Moon, SpaceX plans to have the booster return to the launch site for catch and reuse. The Starship HLS will continue on a trajectory to the Moon.
      To get to the Moon for the Artemis missions, astronauts will launch in NASA’s Orion spacecraft aboard the SLS (Space Launch System) rocket from the agency’s Kennedy Space Center. Once in lunar orbit, Orion will dock with the Starship HLS or with Gateway. Once the spacecraft are docked, the astronauts will move from Orion or Gateway to the Starship HLS, which will bring them to the surface of the Moon. After surface activities are complete, Starship will return the astronauts to Orion or Gateway waiting in lunar orbit. The astronauts will transfer to Orion for the return trip to Earth. 
      Wind tunnel testing at Ames helped engineers better understand the aerodynamic forces the SpaceX Super Heavy rocket, with its 33 Raptor engines, experiences during various stages of flight. As a result of the testing, engineers updated flight control algorithms and modified the exterior design of the rocket.NASA With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of the Red Planet. NASA’s SLS, exploration ground systems, and Orion spacecraft, along with the human landing system, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
      NASA’s Marshall Space Flight Center manages the HLS and SLS programs.
      For more information about Artemis, visit here.
      › Back to Top
      NASA, Boeing Welcome Starliner Spacecraft to Earth, Close Mission
      NASA and Boeing safely returned the uncrewed Starliner spacecraft following its landing at 9:01 p.m. CDT Sept. 6 at White Sands Space Harbor in New Mexico, concluding a three-month flight test to the International Space Station.
      “I am extremely proud of the work our collective team put into this entire flight test, and we are pleased to see Starliner’s safe return,” said Ken Bowersox, associate administrator, Space Operations Mission Directorate at NASA Headquarters. “Even though it was necessary to return the spacecraft uncrewed, NASA and Boeing learned an incredible amount about Starliner in the most extreme environment possible. NASA looks forward to our continued work with the Boeing team to proceed toward certification of Starliner for crew rotation missions to the space station.”
      NASA and Boeing welcomed Starliner back to Earth following the uncrewed spacecraft’s successful landing at 9:01 p.m. CDT Sept. 6 at the White Sands Space Harbor in New Mexico. NASA The flight on June 5 was the first time astronauts launched aboard the Starliner. It was the third orbital flight of the spacecraft, and its second return from the orbiting laboratory. Starliner now will ship to NASA’s Kennedy Space Center for inspection and processing.
      NASA’s Commercial Crew Program requires a spacecraft to fly a crewed test flight to prove the system is ready for regular flights to and from the orbiting laboratory. Following Starliner’s return, the agency will review all mission-related data.
      “We are excited to have Starliner home safely. This was an important test flight for NASA in setting us up for future missions on the Starliner system,” said Steve Stich, manager of NASA’s Commercial Crew Program. “There was a lot of valuable learning that will enable our long-term success. I want to commend the entire team for their hard work and dedication over the past three months.”
      NASA astronauts Butch Wilmore and Suni Williams launched June 5 aboard Starliner for the agency’s Boeing Crewed Flight Test from Cape Canaveral Space Force Station. On June 6, as Starliner approached the space station, NASA and Boeing identified helium leaks and experienced issues with the spacecraft’s reaction control thrusters. Following weeks of in-space and ground testing, technical interchange meetings, and agency reviews, NASA made the decision to prioritize safety and return Starliner without its crew. Wilmore and Williams will continue their work aboard station as part of the Expedition 71/72 crew, returning in February 2025 with the agency’s SpaceX Crew-9 mission.
      The crew flight test is part of NASA’s Commercial Crew Program. The goal of NASA’s Commercial Crew Program is safe, reliable, and cost-effective transportation to and from the International Space Station and low Earth orbit. This already is providing additional research time and has increased the opportunity for discovery aboard humanity’s microgravity testbed, including helping NASA prepare for human exploration of the Moon and Mars.
      › Back to Top
      Artemis IV: Gateway Gadget Fuels Deep Space Dining
      NASA engineers are working hard to ensure no astronaut goes hungry on the Artemis IV mission.
      A prototype of the Mini Potable Water Dispenser, currently in development at NASA’s Marshall Space Flight Center, is displayed alongside various food pouches during a demonstration at NASA’s Johnson Space Center.NASA/David DeHoyos When international teams of astronauts live on Gateway, humanity’s first space station to orbit the Moon, they’ll need innovative gadgets like the Mini Potable Water Dispenser. Vaguely resembling a toy water soaker, it manually dispenses water for hygiene bags, to rehydrate food, or simply to drink. It is designed to be compact, lightweight, portable and manual, making it ideal for Gateway’s relatively small size and remote location compared to the International Space Station closer to Earth.
      Matt Rowell, left, an engineer at Marshall, demonstrates the Mini Portable Water Dispenser to NASA food scientists during a testing session.NASA/David DeHoyos The team at NASA’s Marshall Space Flight Center leading the development of the dispenser understands that when it comes to deep space cuisine, the food astronauts eat is so much more than just fuel to keep them alive.
      “Food doesn’t just provide body nourishment but also soul nourishment,” said Shaun Glasgow, project manager at Marshall. “So ultimately this device will help provide that little piece of soul nourishment. After a long day, the crew can float back and enjoy some pasta or scrambled eggs, a small sense of normalcy in a place far from home.”
      Shaun Glasgow, right, project manager at Marshall, demonstrates the Mini Potable Water Dispenser.NASA/David DeHoyos As NASA continues to innovate and push the boundaries of deep space exploration, devices like the compact, lightweight dispenser demonstrate a blend of practicality and ingenuity that will help humanity chart its path to the Moon, Mars, and beyond.
      › Back to Top
      NASA to host International Observe the Moon Night 2024
      The public is invited to join fellow sky-watchers Sept. 14 for International Observe the Moon Night – a worldwide public event encouraging observation, appreciation, and understanding of the Moon and its connection to NASA exploration and discovery. This celebration of the Moon has been held annually since 2010, and this year NASA’s Planetary Missions Program Office will host an event at the U.S. Space & Rocket Center in Huntsville. The Planetary Missions Program Office is located at NASA’s Marshall Space Flight Center.
      International Observe the Moon Night is Sept. 14.NASA The free event will be from 5:30 to 8 p.m. CDT at the Davidson Center at the rocket center. Attractions will include hands-on STEM activities, telescope viewing from the Von Braun Astronomical Society, music, face painting, a photo booth, a science trivia show, and much more.
      Headline entertainment will be provided by the Science Wizard, David Hagerman. The Science Wizard has appeared on national television and will perform two different science-based stage shows at the event.
      NASA’s Planetary Missions Program Office will host an event as part of International Observe the Moon Night at the U.S. Space & Rocket Center in Huntsville on Sept. 14. NASA It’s the perfect time to universally celebrate the Moon as excitement grows about NASA returning to our nearest celestial neighbor with the Artemis missions. Artemis will land the first woman and first person of color on the Moon, using innovative technologies to explore areas of the lunar surface that have never been discovered before.
      Learn more and find other events here. Happy International Observe the Moon Night!
      › Back to Top
      New Hardware for Future Artemis Moon Missions Arrives at Kennedy
      From across the Atlantic Ocean and through the Gulf of Mexico, two ships converged, delivering key spacecraft and rocket components of NASA’s Artemis campaign to the agency’s Kennedy Space Center.
      On Sept. 3, ESA (European Space Agency) marked a milestone in the Artemis III mission as its European-built service module for NASA’s Orion spacecraft completed a transatlantic journey from Bremen, Germany, to Port Canaveral, Florida, where technicians moved it to nearby Kennedy. Transported aboard the Canopée cargo ship, the European Service Module – assembled by Airbus with components from 10 European countries and the U.S. – provides propulsion, thermal control, electrical power, and water and oxygen for its crews.
      On the left, the Canopée transport carrier containing the European Service Module for NASA’s Artemis III mission arrives at Port Canaveral in Florida on Sept. 3 before completing the last leg of its journey to the agency’s Kennedy Space Center’s Neil A. Armstrong Operations and Checkout via truck. On the right, NASA’s Pegasus barge, carrying several pieces of hardware for Artemis II, III, and IV arrives at Kennedy’s Launch Complex 39 turn basin wharf Sept. 5.NASA “Seeing multi-mission hardware arrive at the same time demonstrates the progress we are making on our Artemis missions,” said Amit Kshatriya, deputy associate administrator, Moon to Mars Program, at NASA Headquarters. “We are going to the Moon together with our industry and international partners and we are manufacturing, assembling, building, and integrating elements for Artemis flights.”
      NASA’s Pegasus barge, the agency’s waterway workhorse for transporting large hardware by sea, ferried multi-mission hardware for the agency’s SLS (Space Launch System) rocket, the Artemis II launch vehicle stage adapter, the “boat-tail” of the core stage for Artemis III, the core stage engine section for Artemis IV, along with ground support equipment needed to move and assemble the large components. The barge pulled into NASA Kennedy’s Launch Complex 39B Turn Basin on Sept. 5.
      The spacecraft factory inside Kennedy’s Neil Armstrong Operations and Checkout Building is set to buzz with additional activity in the coming months. With the Artemis II Orion crew and service modules stacked together and undergoing testing, and engineers outfitting the Artemis III and IV crew modules, engineers soon will connect the newly arrived European Service Module to the crew module adapter, which houses electronic equipment for communications, power, and control, and includes an umbilical connector that bridges the electrical, data, and fluid systems between the crew and service modules.
      The SLS rocket’s cone-shaped launch vehicle stage adapter connects the core stage to the upper stage and protects the rocket’s flight computers, avionics, and electrical devices in the upper stage system during launch and ascent. The adapter will be taken to Kennedy’s Vehicle Assembly Building in preparation for Artemis II rocket stacking operations.
      The boat-tail, which will be used during the assembly of the SLS core stage for Artemis III, is a fairing-like structure that protects the bottom end of the core stage and RS-25 engines. This hardware, picked up at NASA’s Michoud Assembly Facility, will join the Artemis III core stage engine section housed in the spaceport’s Space Systems Processing Facility.
      The Artemis IV SLS core stage engine section arrived from Michoud and also will transfer to the center’s processing facility ahead of final assembly.
      Pegasus also transported the launch vehicle stage adapter for Artemis II, which was moved onto the barge at NASA’s Marshall Space Flight Center on Aug. 21. 
      Under the Artemis campaign, NASA will land the first woman, first person of color, and its first international partner astronaut on the lunar surface, establishing long-term exploration for scientific discovery and preparing for human missions to Mars. The agency’s SLS rocket and Orion spacecraft, and supporting ground systems, along with the human landing system, next-generation spacesuits and rovers, and Gateway, serve as NASA’s foundation for deep space exploration.
      › Back to Top
      Hubble, Chandra Find Supermassive Black Hole Duo
      Like two Sumo wrestlers squaring off, the closest confirmed pair of supermassive black holes have been observed in tight proximity. These are located approximately 300 light-years apart and were detected using NASA’s Hubble Space Telescope and the Chandra X-ray Observatory. These black holes, buried deep within a pair of colliding galaxies, are fueled by infalling gas and dust, causing them to shine brightly as active galactic nuclei (AGN).
      This is an artist’s depiction of a pair of active black holes at the heart of two merging galaxies. They are both surrounded by an accretion disk of hot gas. Some of the material is ejected along the spin axis of each black hole. Confined by powerful magnetic fields, the jets blaze across space at nearly the speed of light as devastating beams of energy.NASA This AGN pair is the closest one detected in the local universe using multiwavelength (visible and X-ray light) observations. While several dozen “dual” black holes have been found before, their separations are typically much greater than what was discovered in the gas-rich galaxy MCG-03-34-64. Astronomers using radio telescopes have observed one pair of binary black holes in even closer proximity than in MCG-03-34-64, but without confirmation in other wavelengths.
      AGN binaries like this were likely more common in the early universe when galaxy mergers were more frequent. This discovery provides a unique close-up look at a nearby example, located about 800 million light-years away.
      The discovery was serendipitous. Hubble’s high-resolution imaging revealed three optical diffraction spikes nested inside the host galaxy, indicating a large concentration of glowing oxygen gas within a very small area. “We were not expecting to see something like this,” said Anna Trindade Falcão of the Center for Astrophysics | Harvard & Smithsonian in Cambridge, Massachusetts, lead author of the paper published Sept. 9 in The Astrophysical Journal. “This view is not a common occurrence in the nearby universe, and told us there’s something else going on inside the galaxy.”
      Diffraction spikes are imaging artifacts caused when light from a very small region in space bends around the mirror inside telescopes.
      A Hubble Space Telescope visible-light image of the galaxy MCG-03-34-064. Hubble’s sharp view reveals three distinct bright spots embedded in a white ellipse at the galaxy’s center (expanded in an inset image at upper right). Two of these bright spots are the source of strong X-ray emission, a telltale sign that they are supermassive black holes. The black holes shine brightly because they are converting infalling matter into energy, and blaze across space as active galactic nuclei. Their separation is about 300 light-years. The third spot is a blob of bright gas. The blue streak pointing to the 5 o’clock position may be a jet fired from one of the black holes. The black hole pair is a result of a merger between two galaxies that will eventually collide. NASA, ESA, Anna Trindade Falcão (CfA); Image Processing: Joseph DePasquale (STScI) Falcão’s team then examined the same galaxy in X-rays light using the Chandra observatory to drill into what’s going on. “When we looked at MCG-03-34-64 in the X-ray band, we saw two separated, powerful sources of high-energy emission coincident with the bright optical points of light seen with Hubble. We put these pieces together and concluded that we were likely looking at two closely spaced supermassive black holes,” Falcão said.
      To support their interpretation, the researchers used archival radio data from the Karl G. Jansky Very Large Array near Socorro, New Mexico. The energetic black hole duo also emits powerful radio waves. “When you see bright light in optical, X-rays, and radio wavelengths, a lot of things can be ruled out, leaving the conclusion these can only be explained as close black holes. When you put all the pieces together it gives you the picture of the AGN duo,” said Falcão.
      The third source of bright light seen by Hubble is of unknown origin, and more data is needed to understand it. That might be gas that is shocked by energy from a jet of ultra high-speed plasma fired from one of the black holes, like a stream of water from a garden hose blasting into a pile of sand.
      “We wouldn’t be able to see all of these intricacies without Hubble’s amazing resolution,” Falcão said.
      Astronomers using NASA’s Hubble Space Telescope have discovered that the jet from a supermassive black hole at the core of M87, a huge galaxy 54 million light years away, seems to cause stars to erupt along its trajectory. The stars, called novae, are not caught inside the jet, but in a dangerous area near it. (NASA’s Goddard Space Flight Center; lead producer: Paul Morris) The two supermassive black holes were once at the core of their respective host galaxies. A merger between the galaxies brought the black holes into close proximity. They will continue to spiral closer together until they eventually merge – in perhaps 100 million years – rattling the fabric of space and time as gravitational waves.
      The National Science Foundation’s Laser Interferometer Gravitational-Wave Observatory (LIGO) has detected gravitational waves from dozens of mergers between stellar-mass black holes. But the longer wavelengths resulting from a supermassive black hole merger are beyond LIGO’s capabilities. The next-generation gravitational wave detector, called the LISA (Laser Interferometer Space Antenna) mission, will consist of three detectors in space, separated by millions of miles, to capture these longer wavelength gravitational waves from deep space. ESA (European Space Agency) is leading this mission, partnering with NASA and other participating institutions, with a planned launch in the mid-2030s.
      NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science from Cambridge, Massachusetts and flight operations from Burlington, Massachusetts. Northrop Grumman Space Technologies in Redondo Beach, California was the prime contractor for the spacecraft.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      › Back to Top
      Betelgeuse! Betelgeuse! Betelgeuse! Stargazers Won’t See Ghosts but Supergiant Star for Spooky Season
      Stargazers seeking familiar points of interest in the night sky are likely to point out Betelgeuse, the red supergiant star sometimes identified as “the shoulder of Orion.” Even some 400-600 light-years distant, it’s typically one of the brightest stars visible in the night sky, and the brightest of all in the infrared spectrum.
      Fewer space enthusiasts may know that Betelgeuse’s nickname may have been mistranslated from the Arabic phrase Ibṭ al-Jauzā’ in the 13th century. Depending on the nuances of pronunciation, Betelgeuse actually might be “the armpit of Orion.”
      Betelgeuse is part of the Orion constellation. NASA What may come as a surprise is that the star that inspired the naming of a ghostly movie menace is doing some hurtling of its own. Betelgeuse is actually a runaway star in the process of bidding a big galactic adios to its birthplace – the hot star association that includes Orion’s Belt – and speeding away at approximately 18.6 miles per second.
      That’s an awesome prospect, said Dr. Debra Wallace, deputy branch chief of Astrophysics at NASA’s Marshall Space Flight Center. Betelgeuse is a pulsating star with an uncertain distance of roughly 548 light-years and changing luminosity. We estimate its radius is approximately 724 times larger than our Sun. If it sat at the center of our solar system, it would swallow the orbits of Mercury, Venus, Earth, and Mars. Its bow shock – the “wave” generated by its passage through the interstellar medium – is roughly four light-years across.
      What cosmic force caused Betelgeuse to go on the interstellar lam from its point of origin?
      “Typically, stars don’t become runaways without receiving a big kick,” Wallace said. “What’s most likely is that the competing gravity of other nearby stars ejected it outward or something else blew up in its proximity. There was a change in the dynamic interactions of the star grouping, and Betelgeuse was sent packing.”
      Betelgeuse is only 10 million years old, but already in the twilight of its life. Given that our own small star is nearly 5 billion years, roughly halfway through its own estimated lifespan, why is Betelgeuse expected to be here today and gone tomorrow – give or take 100,000 years?
      “Think about setting a fire in your back yard,” Wallace said. “The more fuel you throw on it, the faster and hotter it burns. It’s visually impressive – but gone in a flash.”
      That’s because stars ignite a powerful chain of nuclear fusion reactions to counter their own intense gravity, which is always striving to collapse the star in on itself. For supergiants such as Betelgeuse, that delicate balance requires it to burn extremely hot and bright – but that also means it consumes its fuel supply far faster than our own modest young star.
      Wallace said Betelgeuse likely started its life at least 20 times the mass of Earth’s Sun. It’s been visible to us for millennia. Ancient Chinese astronomers would have identified it as a yellow star which has since evolved to the right, per the Hertzsprung-Russell stellar evolution diagram and a 2022 study of the star’s color evolution. When the Egyptian astronomer Ptolemy saw Betelgeuse some 300 years after the earliest Chinese observations, it had gone orange. Today, the star has taken on a fierce red color that makes it easy to find in the night sky.
      This four-panel illustration reveals how the southern region of the red supergiant Betelgeuse suddenly may have become fainter for several months in late 2019 and early 2020. In the first two panels, as seen in ultraviolet light by NASA’s Hubble Space Telescope, a bright, hot blob of plasma is ejected from a convection cell on the star’s surface. In panel three, the expelled gas rapidly expands outward, cooling to form an enormous cloud of obscuring dust grains. The final panel reveals the huge dust cloud blocking the light from a quarter of Betelgeuse’s surface, as seen from Earth. “Betelgeuse likely will burn for another 100,000 years or so, depending on its mass loss rate, then could end up a blue supergiant – like Rigel, the star that serves as Orion’s right knee – before it explodes,” Wallace said. That supernova event, she noted, will release as much energy in a split-second as our Sun generates in its entire lifetime, though Betelgeuse is far too distant to have any effect on our solar system.
      Which isn’t to say the red supergiant doesn’t have any surprises left. In October 2019, Betelgeuse abruptly darkened, as much as half of its luminosity draining away in an event astronomers dubbed “the Great Dimming.”
      Researchers began speculating about an early supernova, but by early 2020, Betelgeuse had brightened once more. Studies using NASA’s Hubble Space Telescope suggested a slightly less explosive cause. An upwelling of a large convection cell on Betelgeuse – perhaps in honor of its flatulent namesake – had expelled a titanic outburst of superhot plasma, yielding a dust cloud that dramatically blocked the star’s light for months.
      “We’re still figuring out the mechanisms which cause massive star evolution, and the advent of new telescopes has been tremendously helpful,” Wallace said. “We’ve only realized in the last 20 or 30 years that most massive stars are products of binary evolution.”
      Was Betelgeuse part of a binary star system, and did its demise – or a cataclysmic split – turn it into a runaway? Is it possible it’s still there, having merged with or still locked in a fatal dance with its fugitive partner? New studies suggest those may be possibilities, though Wallace notes that further intensive study is needed.
      Will Betelgeuse ultimately go out with a bang or a whimper? Time will tell. But don’t write off the red giant just yet.
      Stargazers in the Northern Hemisphere seeking to spot Betelgeuse should scan the southwestern sky. Those south of the equator should look in the northwestern sky. Find a line of three bright stars clustered together, representing Orion’s belt. Two brighter stars just to the north mark Orion’s shoulders; the very bright left one is Betelgeuse.
      Learn more about Betelgeuse here.
      › Back to Top
      NASA’s Mini BurstCube Mission Detects Mega Blast
      The shoebox-sized BurstCube satellite has observed its first gamma-ray burst, the most powerful kind of explosion in the universe, according to a recent analysis of observations collected over the last several months.
      “We’re excited to collect science data,” said Sean Semper, BurstCube’s lead engineer at NASA’s Goddard Space Flight Center. “It’s an important milestone for the team and for the many early career engineers and scientists that have been part of the mission.”
      BurstCube, trailed by another CubeSat named SNOOPI (Signals of Opportunity P-band Investigation), emerges from the International Space Station on April 18. NASA/Matthew Dominick The event, called GRB 240629A, occurred June 29 in the southern constellation Microscopium. The team announced the discovery in a GCN (General Coordinates Network) circular on Aug. 29.
      BurstCube deployed into orbit April 18 from the International Space Station, following a March 21 launch. The mission was designed to detect, locate, and study short gamma-ray bursts, brief flashes of high-energy light created when superdense objects like neutron stars collide. These collisions also produce heavy elements like gold and iodine, an essential ingredient for life as we know it. 
      BurstCube is the first CubeSat to use NASA’s TDRS (Tracking and Data Relay Satellite) system, a constellation of specialized communications spacecraft. Data relayed by TDRS (pronounced “tee-driss”) help coordinate rapid follow-up measurements by other observatories in space and on the ground through NASA’s GCN. BurstCube also regularly beams data back to Earth using the Direct to Earth system – both it and TDRS are part of NASA’s Near Space Network.
      After BurstCube deployed from the space station, the team discovered that one of the two solar panels failed to fully extend. It obscures the view of the mission’s star tracker, which hinders orienting the spacecraft in a way that minimizes drag. The team originally hoped to operate BurstCube for 12-18 months, but now estimates the increased drag will cause the satellite to re-enter the atmosphere in September. 
      “I’m proud of how the team responded to the situation and is making the best use of the time we have in orbit,” said Jeremy Perkins, BurstCube’s principal investigator at Goddard. “Small missions like BurstCube not only provide an opportunity to do great science and test new technologies, like our mission’s gamma-ray detector, but also important learning opportunities for the up-and-coming members of the astrophysics community.”
      BurstCube is led by Goddard. It’s funded by the Science Mission Directorate’s Astrophysics Division at NASA Headquarters. The BurstCube collaboration includes: the University of Alabama in Huntsville; the University of Maryland, College Park; the Universities Space Research Association in Washington; the Naval Research Laboratory in Washington; and NASA’s Marshall Space Flight Center.
      › Back to Top
      View the full article
    • By NASA
      ISS003-E-5388 (11 September 2001) — One of a series of pictures taken of metropolitan New York City (and other parts of New York as well as New Jersey) by one of the Expedition Three crew members onboard the International Space Station (ISS) at various times during the day of September 11, 2001. The image shows a smoke plume rising from the Manhattan area. The orbital outpost was flying at an altitude of approximately 250 miles. The image was recorded with a digital still camera. Please note: The date identifiers on some frames (other than those that indicate Sept. 11, 2001) are not accurate due to a technical problem with one of the Expedition Three cameras.NASA Editor’s Note:The following is the text of a letter from Expedition Three Commander Frank L. Culbertson (Captain, USN Retired), reflecting on the events of September 11.
      September 12, 2001; 7:34 p.m.
      I haven’t written very much about specifics of this mission during the month I’ve been here, mainly for two reasons: the first being that there has been very little time to do that kind of writing, and secondly because I’m not sure how comfortable I am sharing thoughts I share with family and friends with the rest of the world.
      Well, obviously the world changed today. What I say or do is very minor compared to the significance of what happened to our country today when it was attacked by …. by whom? Terrorists is all we know, I guess. Hard to know at whom to direct our anger and fear…
      I had just finished a number of tasks this morning, the most time-consuming being the physical exams of all crew members. In a private conversation following that, the flight surgeon told me they were having a very bad day on the ground. I had no idea…
      He described the situation to me as best he knew it at ~0900 CDT. I was flabbergasted, then horrified. My first thought was that this wasn’t a real conversation, that I was still listening to one of my Tom Clancy tapes. It just didn’t seem possible on this scale in our country. I couldn’t even imagine the particulars, even before the news of further destruction began coming in.
      Vladimir came over pretty quickly, sensing that something very serious was being discussed. I waved Michael into the module as well. They were also amazed and stunned. After we signed off, I tried to explain to Vladimir and Michael as best I could the potential magnitude of this act of terror in downtown Manhattan and at the Pentagon. They clearly understood and were very sympathetic.
      I glanced at the World Map on the computer to see where over the world we were and noticed that we were coming southeast out of Canada and would be passing over New England in a few minutes. I zipped around the station until I found a window that would give me a view of NYC and grabbed the nearest camera. It happened to be a video camera, and I was looking south from the window of Michael’s cabin.
      The smoke seemed to have an odd bloom to it at the base of the column that was streaming south of the city. After reading one of the news articles we just received, I believe we were looking at NY around the time of, or shortly after, the collapse of the second tower. How horrible…
      I panned the camera all along the East Coast to the south to see if I could see any other smoke around Washington, or anywhere else, but nothing was visible.
      It was pretty difficult to think about work after that, though we had some to do, but on the next orbit we crossed the US further south. All three of us were working one or two cameras to try to get views of New York or Washington. There was haze over Washington, but no specific source could be seen. It all looked incredible from two to three hundred miles away. I can’t imagine the tragic scenes on the ground.
      Other than the emotional impact of our country being attacked and thousands of our citizens and maybe some friends being killed, the most overwhelming feeling being where I am is one of isolation.
      Next day….
      I guess the fatigue and emotional strain got the best of me. I couldn’t stay awake and continue to write. Today was still difficult, but we started getting more information, plus we had the honor of talking directly with the Center Director, Roy Estess, who assured us that the ground teams would continue to work and ensure our safety, as well as the safe operation of the Station. We also heard from our Administrator, Mr. Goldin, who added that the partners in the Program are all totally committed to continuing safe operations and support. These were never questions for me. I know all these people! The ground teams have been incredibly supportive, very understanding of the impact of the news, and have tried to be as helpful as possible. They have all been very professional and focused though I can’t imagine the distraction of this type of news coming in and the thought that government buildings might be at risk. They never skipped a beat, even when relocating control centers. And a group of senior personnel and friends gave us a pretty thorough briefing on what was known and what was being done in the government and at NASA on Tuesday afternoon, which was very helpful and kind of them to do in the midst of all the turmoil. The Russian TsUP has also been supportive and helpful, trying to uplink news articles when our own assets were inoperable, and saying kind words…
      My crewmates have been great, too. They know it’s been a tough day for me and the folks on the ground, and they’ve tried to be as even keeled and helpful as possible. Michael even fixed me my favorite Borscht soup for dinner. And they give me plenty of room to think when I needed it. They are very sympathetic and of course outraged at whoever would do this.
      I know so many people in Washington, so many people who travel to DC and NYC, so many who are pilots, that I felt sure I would receive at least a few pieces of bad news over the next few days. I got the first one today when I learned that the Captain of the American Airlines jet that hit the Pentagon was Chic Burlingame, a classmate of mine. I met Chic during plebe summer when we were in the D&B together, and we had lots of classes together. I can’t imagine what he must of gone through, and now I hear that he may have risen further than we can even think of by possibly preventing his plane from being the one to attack the White House. What a terrible loss, but I’m sure Chic was fighting bravely to the end. And tears don’t flow the same in space…
      It’s difficult to describe how it feels to be the only American completely off the planet at a time such as this. The feeling that I should be there with all of you, dealing with this, helping in some way, is overwhelming. I know that we are on the threshold (or beyond) of a terrible shift in the history of the world. Many things will never be the same again after September 11, 2001. Not just for the thousands and thousands of people directly affected by these horrendous acts of terrorism, but probably for all of us. We will find ourselves feeling differently about dozens of things, including probably space exploration, unfortunately.
      It’s horrible to see smoke pouring from wounds in your own country from such a fantastic vantage point. The dichotomy of being on a spacecraft dedicated to improving life on the earth and watching life being destroyed by such willful, terrible acts is jolting to the psyche, no matter who you are. And the knowledge that everything will be different than when we launched by the time we land is a little disconcerting. I have confidence in our country and in our leadership that we will do everything possible to better defend her and our families, and to bring justice for what has been done. I have confidence that the good people at NASA will do everything necessary to continue our mission safely and return us safely at the right time. And I miss all of you very much. I can’t be there with you in person, and we have a long way to go to complete our mission, but be certain that my heart is with you, and know you are in my prayers.
      Humbly,
      Frank
      September 14, 2001; 10:49 p.m.
      An update to the last letter… Fortunately, it’s been a busy week up here. And to prove that, like our country, we are continuing on our intended path with business as usual (as much as possible). Tonight the latest addition to the station, the Russian Docking Compartment will be launched from Baikonur, Kazakhstan. On Saturday night (US time), it will dock with us, at a port never used before on the nadir side of the Service Module. This new module will give us another place to dock a Progress or Soyuz and will provide a large airlock with two useable hatches for conducting EVA’s in Russian Orlan suits, which we will do a few of before we come home.
      The problem before in dealing with this week was too little news. The problem now is too much. It came all at once when email was restored, and there’s not enough time to read it all! Plus it’s too hard to deal with all of it at once. But I appreciate getting it, and I really appreciate the great letters of support and friendship I am receiving.
      We are doing well on board, getting our work done, and talking about things. Last night we had a long discussion over dinner about the significance of these events, the possible actions to follow, and what should be done. After dinner, Michael made a point of telling me that every email he received from friends in Russia said specifically to tell me how sorry they were that this happened, extending their condolences, and asking how I was doing. Vladimir taught me the Russian word for “condolences” after talking to the previous CDR, Yuri Usachev, on the phone in Star City. (Both the Russian and the English words are much too long to pronounce easily.) Very kind people.
      For the last two days, the Russian MCC has been good enough to transmit live broadcasts of radio news about the event and associated stories, to make sure I was well informed. Every specialist who has come on the line to discuss a procedure or a problem has at some point extended greetings to me with kind words. Tonight the Russian capcom told us that because of the special day of remembrance in the US, all day people had been bringing flowers and lining all the walls of the US embassy in Moscow, and this evening they were lighting candles in the street outside the embassy. How the world has changed.
      People everywhere seem to recognize the senselessness and horror in this attack. And the tremendous loss. Moscow has dealt with these kind of problems in the last few years with apartment and subway bombings, so they are as anxious to get rid of this threat as we are. But the bottom line is that there are good people everywhere who want to live in peace. I read that a child asked, “America is so good to other countries, we always help everyone, how can they hate us so much?”
      I hope the example of cooperation and trust that this spacecraft and all the people in the program demonstrate daily will someday inspire the rest of the world to work the same way. They must!
      Unfortunately, we won’t be flying over the US during the time people are lighting candles. Don’t know if we could see that anyway. We did, however, see a very unusual and beautiful sight a few minutes ago: the launch of our Docking Compartment on a Soyuz booster. We were overtaking it and it came into view about three minutes after its launch from Baikonur as the sun hit our station, so it was still in the dark. It looked like a large comet with a straight, wide tail silhouetted against the dark planet beneath. Despite some bad lighting for a while as the sun hit our window at a low angle, I managed some video of it as first we passed the rocket, and then watched it begin to catch up as it gained altitude and speed. I filmed until main engine cutoff and booster separation occurred just as we approached sunrise on the Himalayas. An unforgettable sight in an unforgettable week…
      Life goes on, even in space. We’re here to stay…
      Frank
      View the full article
    • By European Space Agency
      Week in images: 02-06 September 2024
      Discover our week through the lens
      View the full article
  • Check out these Videos

×
×
  • Create New...