Jump to content

15 Years Ago: STS-128 Delivers Cargo to Enable Six-Person Space Station Crew


Recommended Posts

  • Publishers
Posted

On Aug. 28, 2009, space shuttle Discovery began its 37th trip into space. The 17A mission to the International Space Station was the 30th shuttle flight to the orbiting lab. During the 14-day mission, the seven-member STS-128 crew worked with Expedition 20, the first six-person crew aboard the station, during nine days of docked operations. In addition to completing a one-for-one long-duration crew member exchange, they delivered more than seven tons of supplies, including three new payload racks and three systems to maintain a six-person crew aboard the space station. They completed three spacewalks to perform maintenance on the facility, prepare the station for the arrival of the next module, and retrieve two science experiments for return to Earth.

The STS-128 crew patch Official photograph of the STS-128 crew The 17A mission patch
Left: The STS-128 crew patch. Middle: Official photograph of the STS-128 crew of José M. Hernández, left, Kevin A. Ford, John D. “Danny” Olivas, Nicole P. Stott, A. Christer Fuglesang of Sweden representing the European Space Agency, Frederick “Rick” W. Sturckow, and Patrick G. Forrester. Right: The 17A mission patch.

The seven-person STS-128 crew consisted of Commander Frederick “Rick” W. Sturckow, Pilot Kevin A. Ford, and Mission Specialists Patrick G. Forrester, José M. Hernández, John D. “Danny” Olivas, and A. Christer Fuglesang of Sweden representing the European Space Agency (ESA), and Nicole P. Stott. Primary objectives of the mission included the launch to the station of facilities required to maintain a permanent six-person crew and the exchange of Stott for Timothy L. Kopra who had been aboard the space station since July 2009 as a member of Expedition 20. The facilities, launched inside the Leonardo Multi-Purpose Logistics Module (MPLM), included an additional Crew Quarters, the T2 COLBERT treadmill, and an Air Revitalization System rack. Three payload racks – the Materials Science Research Rack, the Fluids Integrated Rack, and the second Minus Eighty-degree Laboratory Freezer for ISS – also rode inside the MPLM for transfer to the station to expand its research capabilities.

The STS-128 crew at the conclusion of the Terminal Countdown Demonstration Test at NASA’s Kennedy Space Center in Florida Space shuttle Discovery during the rollout to Launch Pad 39A The Leonardo Multi-Purpose Logistics Module in Discovery’s payload bay at Launch Pad 39A
Left: The STS-128 crew at the conclusion of the Terminal Countdown Demonstration Test at NASA’s Kennedy Space Center in Florida. Middle: Space shuttle Discovery during the rollout to Launch Pad 39A. Right: The Leonardo Multi-Purpose Logistics Module in Discovery’s payload bay at Launch Pad 39A.

Discovery returned from its previous mission, STS-119, on March 28, 2009, and workers towed it to the Orbiter Processing Facility at NASA’s Kennedy Space Center (KSC). The orbiter rolled over to the Vehicle Assembly Building on July 26, and after mating with its external tank and twin solid rocket boosters, rolled out to Launch Pad 39A on Aug. 4, targeting Aug. 25 for launch. Three days later, the seven-member crew participated in the Terminal Countdown Demonstration Test, essentially a dress rehearsal of the actual countdown for launch, returned to Houston for final training. They arrived at KSC on Aug 19 to prepare for launch.

Liftoff of space shuttle Discovery on STS-128 Discovery streaks into the night sky
Left: Liftoff of space shuttle Discovery on STS-128. Right: Discovery streaks into the night sky.

Clouds and lighting in the launch area forced a scrub of the first launch attempt on Aug. 25, while a faulty valve indicator scrubbed the next day’s attempt. On Aug. 28, at 11:59 p.m. EDT, space shuttle Discovery lifted off from Launch Pad 39A to begin its 37th trip into space, carrying its seven-member crew on the 17A space station outfitting and resupply mission. Eight and a half minutes later, Discovery and its crew had reached orbit. This marked Sturckow’s fourth time in space, Forrester’s third, Olivas’ and Fuglesang’s second, while Ford, Hernández, and Stott enjoyed their first taste of weightlessness.

Kevin A. Ford José M. Hernández Nicole P. Stott
First time space flyers Kevin A. Ford, left, José M. Hernández, and Nicole P. Stott enjoying the first few minutes of weightlessness shortly after reaching orbit.

After reaching orbit, the crew opened the payload bay doors and deployed the shuttle’s radiators, and removed their bulky launch and entry suits, stowing them for the remainder of the flight. The astronauts spent five hours on their second day in space conducting a detailed inspection of Discovery’s nose cap and wing leading edges, with Ford, Forrester, and Hernández taking turns operating the Shuttle Remote Manipulator System (SRMS), or robotic arm, and the Orbiter Boom Sensor System (OBSS).

Frederick “Rick” W. Sturckow, left, and Kevin A. Ford perform maneuvers for the rendezvous with the space station Discovery as seen from the space station during the rendezvous The space station as seen from Discovery during the rendezvous
Left: Frederick “Rick” W. Sturckow, left, and Kevin A. Ford perform maneuvers for the rendezvous with the space station. Middle: Discovery as seen from the space station during the rendezvous. Right: The space station as seen from Discovery during the rendezvous.

On the mission’s third day, Sturckow assisted by his crewmates brought Discovery in for a docking with the space station. The docking occurred on the 25th anniversary of Discovery’s first launch on the STS-41D mission on Aug. 30, 1984. During the rendezvous, Sturckow stopped the approach at 600 feet and completed the Rendezvous Pitch Maneuver so astronauts aboard the station could photograph Discovery’s underside to look for any damage to the tiles. Shortly after docking, the crews opened the hatches between the two spacecraft and the six-person station crew welcomed the seven-member shuttle crew. After exchanging Soyuz spacesuits and seat liners, Stott joined the Expedition 20 crew and Kopra the STS-128 crew.

Transfer of Timothy L. Kopra’s Soyuz seat liner and spacesuit from the space station to the space shuttle Kevin A. Ford, left, and Michael R. Barratt operate the station’s robotic arm The MPLM approaches the Node 2 nadir berthing port
Left: Transfer of Timothy L. Kopra’s Soyuz seat liner and spacesuit from the space station to the space shuttle makes him an STS-128 crew member for return to Earth. Middle:Kevin A. Ford, left, and Michael R. Barratt operate the station’s robotic arm to transfer the Leonardo Multi-Purpose Logistics Module (MPLM) from the shuttle payload bay to the space station. Right: The MPLM approaches the Node 2 nadir berthing port.

Frank DeWinne, left, and A. Christer Fuglesang, both of the European Space Agency, open the hatch to the Leonardo Multi-Purpose Logistics Module José M. Hernández inside the MPLM to monitor transfer operations DeWinne, left, and Fuglesang begin the transfer of the T2 COLBERT treadmill from the MPLM to the space station
Left: Frank DeWinne, left, and A. Christer Fuglesang, both of the European Space Agency, open the hatch to the Leonardo Multi-Purpose Logistics Module. Middle: José M. Hernández inside the MPLM to monitor transfer operations. Right: DeWinne, left, and Fuglesang begin the transfer of the T2 COLBERT treadmill from the MPLM to the space station.

The day after docking, Ford and Expedition 20 Flight Engineer Michael R. Barrrat used the space station’s robotic arm to grapple the MPLM in the shuttle’s payload bay. They transferred it to the station, berthing it at the Harmony Node 2 module’s nadir port. The crew activated the MPLM and Fuglesang and Expedition 20 Commander Frank L. DeWinne of Belgium representing ESA opened the hatches, enabling the start of cargo transfers.

John D. “Danny” Olivas, left, and Nicole P. Stott remove the EuTEF experiment from the Columbus module Stott rides the station robotic arm carrying the EuTEF experiment, with the removed Ammonia Tank Assembly attached to it An open MISSE container showing the various exposure samples Stott carrying one of the two closed MISSE containers
Left: During the first spacewalk, John D. “Danny” Olivas, left, and Nicole P. Stott remove the EuTEF experiment from the Columbus module. Middle left: Stott rides the station robotic arm carrying the EuTEF experiment, with the removed Ammonia Tank Assembly attached to it. Middle right: An open MISSE container showing the various exposure samples. Right: Stott carrying one of the two closed MISSE containers.

During the mission’s first spacewalk on flight day five, Olivas and Stott first removed a used Ammonia Tank Assembly (ATA) from the P1 truss segment. With Ford and Expedition 20 Flight Engineer Robert B. Thirsk of the Canadian Space Agency operating the space station’s robotic arm, they moved Stott to the end of the Columbus module, where she and Olivas removed the European Technology Exposure Facility (EuTEF) science payload. Ford and Thirsk translated Stott to the shuttle’s payload bay where she and Olivas stowed it for return to Earth. The pair returned to Columbus to close and retrieve the two Materials on International Space Station Experiments (MISSE) and stowed them in the payload bay for return. This first spacewalk lasted 6 hours 35 minutes. Meanwhile, other crew members busied themselves with transferring racks and cargo from the MPLM to the space station.

A. Christer Fugelsang of the European Space Agency shows off his installation of the Air Revitalization System rack in the Kibo module Patrick G. Forrester with three bags during cargo transfer operations During handover operations, outgoing space station crew member Timothy L. Kopra, middle, shows incoming crew member Nicole P. Stott how to give a proper haircut in space
Left: A. Christer Fugelsang of the European Space Agency shows off his installation of the Air Revitalization System rack in the Kibo module. Middle: Patrick G. Forrester with three bags during cargo transfer operations. Right: During handover operations, outgoing space station crew member Timothy L. Kopra, middle, shows incoming crew member Nicole P. Stott how to give a proper haircut in space.

Frederick “Rick” W. Sturckow, left, and Patrick G. Forrester seen through an overhead window A. Christer Fuglesang carries both the old and the new Ammonia Tank Assemblies (ATA) on the end of the space station robotic arm Fuglesang stowing the old ATA in the shuttle’s payload bay
Left: Frederick “Rick” W. Sturckow, left, and Patrick G. Forrester seen through an overhead window. Middle: During the mission’s second spacewalk, A. Christer Fuglesang carries both the old and the new Ammonia Tank Assemblies (ATA) on the end of the space station robotic arm. Right: Fuglesang stowing the old ATA in the shuttle’s payload bay.

Cargo transfers continued throughout flight day six, including the three payload racks. On flight day seven, Olivas and Fuglesang conducted the mission’s second spacewalk, lasting 6 hours 39 minutes. They completed the swap out of the ATA, with Fuglesang riding the station arm carrying both the old and the new units, before they installed the new unit on the P1 truss, and then returned with the old unit to stow it in the payload bay.

John D. “Danny” Olivas works in the shuttle’s payload bay during the mission’s third spacewalk Olivas, left, and A. Christer Fuglesang work on the space station truss
Left: John D. “Danny” Olivas works in the shuttle’s payload bay during the mission’s third spacewalk. Right: Olivas, left, and A. Christer Fuglesang work on the space station truss.

With cargo transfers continuing on flight day eight, the next day Olivas and Fuglesang stepped outside for the mission’s third and final spacewalk. They completed a variety of tasks, including routing cables to accommodate the Tranquility Node 3 module scheduled to arrive on a future space shuttle flight, and installing GPS antennas on the S0 truss. This spacewalk lasted 7 hours 1 minute, bringing the total spacewalking time for STS-128 to 20 hours 15 minutes. The crew enjoyed a well-deserved off-duty day on flight day 10.

Astronauts robotically stow the Leonardo Multi-Purpose Logistics Module (MPLM) back in Discovery’s payload bay A. Christer Fuglesang, left, and Nicole P. Stott operate the space station’s robotic arm
Left: Astronauts robotically stow the Leonardo Multi-Purpose Logistics Module (MPLM) back in Discovery’s payload bay. Right: A. Christer Fuglesang, left, and Nicole P. Stott operate the space station’s robotic arm to stow the MPLM in the payload bay.

The astronauts completed the final transfers on Sept. 8, the mission’s 11th flight day, they deactivated the MPLM, and closed its hatch. Operating the space station’s robotic arm, Stott and Fuglesang transferred the MPLM from the station back to the shuttle’s payload bay. On Sept. 10, the next vehicle to occupy that port, the Japanese H-II Transfer Vehicle-1 (HTV-1), launched from the Tanegashima Space Center, arriving at the station one week later.

The 13 members of Expedition 20, blue shirts, and STS-128, red shirts, pose for a final photograph before saying their farewells Four members of the astronaut class of 2000 in space together
Left: The 13 members of Expedition 20, blue shirts, and STS-128, red shirts, pose for a final photograph before saying their farewells. Right: Four members of the astronaut class of 2000 in space together.

Kevin A. Ford pilots Discovery for the undocking and flyaround The space station seen from Discovery during the flyaround
Left: Kevin A. Ford pilots Discovery for the undocking and flyaround. Right: The space station seen from Discovery during the flyaround.

That same day, they held a brief farewell ceremony, parted company, and closed the hatches between the two spacecraft. The next day, with Ford at the controls, Discovery undocked from the space station, having spent nine days as a single spacecraft. Ford completed a flyaround  of the station, with the astronauts photographing it to document its condition. A final separation burn sent Discovery on its way. Ford, Forrester, and Hernández used the shuttle’s arm to pick up the OBSS and perform a late inspection of Discovery’s thermal protection system. On flight day 13, Sturckow and Ford tested Discovery’s reaction control system thrusters and flight control surfaces in preparation for the next day’s entry and landing. The entire crew busied themselves with stowing all unneeded equipment. Bad weather at KSC delayed the landing by a day, and more bad weather diverted the landing to Edwards Air Force Base in California.

Discovery touches down at Edwards Air Force Base in California The Crew Transport Vehicle Discovery atop its Shuttle Carrier Aircraft
Left: Discovery touches down at Edwards Air Force Base in California. Middle: The Crew Transport Vehicle has approached Discovery to enable the astronauts to exit the vehicle. Right: Discovery atop its Shuttle Carrier Aircraft departs Edwards for NASA’s Kennedy Space Center in Florida.

Six of the STS-128 astronauts pose with Discovery on the runway at Edwards Air Force Base in California The welcome home ceremony for the STS-128 crew at Ellington Field in Houston
Left: Six of the STS-128 astronauts pose with Discovery on the runway at Edwards Air Force Base in California. Right: The welcome home ceremony for the STS-128 crew at Ellington Field in Houston.

On Sept. 11, the astronauts closed Discovery’s payload bay doors, donned their launch and entry suits, and strapped themselves into their seats, a special recumbent one for Kopra who had spent the last two months in weightlessness. Sturckow fired Discovery’s two Orbital Maneuvering System engines to bring them out of orbit and head for a landing half an orbit later. He guided Discovery to a smooth touchdown at Edwards, as it turned out the final space shuttle landing at the California facility. The landing capped off a very successful STS-128 mission of 13 days, 20 hours, 54 minutes. They orbited the planet 219 times. Kopra spent 58 days, 2 hours, 50 minutes in space, completing 920 orbits of the Earth. Workers placed Discovery atop a Shuttle Carrier Aircraft, a modified Boeing 747, to ferry it back to KSC where it landed on Sept. 21. Engineers began preparing it for its next flight, STS-131 in April 2010.

Enjoy the crew narrate a video about the STS-128 mission.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      A host of scientific investigations await the crew of NASA’s SpaceX Crew-11 mission during their long-duration expedition aboard the International Space Station. NASA astronauts Zena Cardman and Mike Fincke, and JAXA (Japan Aerospace Exploration Agency) astronaut Kimiya Yui, are set to study plant cell division and microgravity’s effects on bacteria-killing viruses, as well as perform experiments to produce a higher volume of human stem cells and generate on-demand nutrients.
      Here are details on some of the research scheduled during the Crew-11 mission:
      Making more stem cells
      Cultures of stem cells grown in 2D on Earth, left, and as 3D spheres in simulated microgravity on Earth.BioServe A stem cell investigation called StemCellEx-IP1 evaluates using microgravity to produce large numbers of induced pluripotent stem cells. Made by reprogramming skin or blood cells, these stem cells can transform into any type of cell in the body and are used in regenerative medicine therapies for many diseases. However, producing enough cells on the ground is a challenge.
      Researchers plan to use the microgravity environment aboard the space station to demonstrate whether generating 1,000 times more cells is possible and whether these cells are of higher quality and better for clinical use than those made on Earth. If proven, this could significantly improve future patient outcomes.
      “This type of stem cell research is a chance to find treatments and maybe even cures for diseases that currently have none,” said Tobias Niederwieser of BioServe Space Technologies, which developed the investigation. “This represents an incredible potential to make life here on Earth better for all of us. We can take skin or blood cells from a patient, convert them into stem cells, and produce custom cell-therapy with little risk for rejection, as they are the person’s own cells.”
      Alternative to antibiotics
      Genes in Space-12 student investigators Isabella Chuang, left, and Julia Gross, middle, with mentor Kayleigh Ingersoll Omdahl.Genes in Space Genes in Space is a series of competitions in which students in grades 7 through 12 design DNA experiments that are flown to the space station. Genes in Space-12 examines the effects of microgravity on interactions between certain bacteria and bacteriophages, which are viruses that infect and kill bacteria. Bacteriophages already are used to treat bacterial infections on Earth.
      “Boeing and miniPCR bio co-founded this competition to bring real-world scientific experiences to the classroom and promote molecular biology investigations on the space station,” said Scott Copeland of Boeing, and co-founder of Genes in Space. “This
      investigation could establish a foundation for using these viruses to treat bacterial infections in space, potentially decreasing the dependence on antibiotics.”
      “Previous studies indicate that bacteria may display increased growth rates and virulence in space, while the antibiotics used to combat them may be less effective,” said Dr. Ally Huang, staff scientist at miniPCR bio. “Phages produced in space could have profound implications for human health, microbial control, and the sustainability of long-duration remote missions. Phage therapy tools also could revolutionize how we manage bacterial infections and microbial ecosystems on Earth.”
      Edible organisms
      A purple, pre-incubation BioNutrients-3 bag, left, and a pink bag, right, which has completed incubation, on a purple and pink board used for comparison.NASA Some vitamins and nutrients in foods and supplements lose their potency during prolonged storage, and insufficient intake of even a single nutrient can lead to serious diseases, such as a vitamin C deficiency, causing scurvy. The BioNutrients-3 experiment builds on previous investigations looking at ways to produce on-demand nutrients in space using genetically engineered organisms that remain viable for years. These include yogurt and a yeast-based beverage made from yeast strains previously tested aboard station, as well as a new, engineered co-culture that produces multiple nutrients in one sample bag.
      “BioNutrients-3 includes multiple food safety features, including pasteurization to kill microorganisms in the sample and a demonstration of the feasibility of using a sensor called E-Nose that simulates an ultra-sensitive nose to detect pathogens,” said Kevin Sims, project manager at NASA’s Ames Research Center in California’s Silicon Valley.
      Another food safety feature is a food-grade pH indicator to track bacterial growth.
      “These pH indicators help the crew visualize the progress of the yogurt and kefir samples,” Sims said. “As the organisms grow, they generate lactic acid, which lowers the pH and turns the indicator pink.”
      The research also features an investigation of yogurt passage, which seeds new cultures using a bit of yogurt from a finished bag, much like maintaining a sourdough bread starter. This method could sustain a culture over multiple generations, eliminating concerns about yogurt’s shelf life during a mission to the Moon or Mars while reducing launch mass.
      Understanding cell division
      Cells of green algae dividing.University of Toyama The JAXA Plant Cell Division investigation examines how microgravity affects cell division in green algae and a strain of cultured tobacco cells. Cell division is a fundamental element of plant growth, but few studies have examined it in microgravity.
      “The tobacco cells divide frequently, making the process easy to observe,” said Junya Kirima of JAXA. “We are excited to reveal the effects of the space environment on plant cell division and look forward to performing time-lapse live imaging of it aboard the space station.”
      Understanding this process could support the development of better methods for growing plants for food in space, including on the Moon and Mars. This investigation also could provide insight to help make plant production systems on Earth more efficient.
      For nearly 25 years, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and conducting critical research for the benefit of humanity and our home planet. Space station research supports the future of human spaceflight as NASA looks toward deep space missions to the Moon under the Artemis campaign and in preparation for future human missions to Mars, as well as expanding commercial opportunities in low Earth orbit and beyond.
      Learn more about the International Space Station at:
      https://www.nasa.gov/station
      Keep Exploring Discover More Topics From NASA
      Latest News from Space Station Research
      Space Station Research and Technology
      Humans In Space
      Station Benefits for Humanity
      View the full article
    • By Space Force
      Colorado Springs is playing host to the DOD Warrior Games July 18-26, and for the first time, Guardians are among the nearly 200 wounded, ill and injured athletes competing in 11 adaptive sports over nine days.

      View the full article
    • By NASA
      The Axiom Mission 4 crew launched on June 25, 2025, aboard a SpaceX Dragon spacecraft to the International Space Station from NASA’s Kennedy Space Center in Florida. From left to right: Tibor Kapu of Hungary, ISRO (Indian Space Research Organization) astronaut Shubhanshu Shukla, former NASA astronaut Peggy Whitson, and ESA (European Space Agency) astronaut Sławosz Uznański-Wiśniewski of Poland (Credit: Axiom Space). The NASA-supported fourth private astronaut mission to the International Space Station, Axiom Mission 4, completed its flight as part of the agency’s efforts to demonstrate demand and build operational knowledge for future commercial space stations.
      The four-person crew safely returned to Earth, splashing down off the coast of California at 5:31 a.m. EDT on Tuesday, aboard a SpaceX Dragon spacecraft. Teams aboard SpaceX recovery vessels retrieved the spacecraft and astronauts. 
      Peggy Whitson, former NASA astronaut and director of human spaceflight at Axiom Space, ISRO (Indian Space Research Organization) astronaut Shubhanshu Shukla, and ESA (European Space Agency) project astronaut Sławosz Uznański-Wiśniewski of Poland, and Hungarian to Orbit (HUNOR) astronaut Tibor Kapu of Hungary, completed about two and a half weeks in space.
      The Axiom Mission 4 crew launched at 2:31 a.m. on June 25, on a Falcon 9 rocket from NASA’s Kennedy Space Center in Florida. Approximately 28 hours later, Dragon docked to the space-facing port of the space station’s Harmony module. The astronauts undocked at 7:15 a.m. on July 14, to begin the trip home.
      The crew conducted microgravity research, educational outreach, and commercial activities. The spacecraft will return to Florida for inspection and processing at SpaceX’s refurbishing facilities. Throughout their mission, the astronauts conducted about 60 science experiments, and returned science, including NASA cargo, back to Earth.
      A collaboration between NASA and ISRO allowed Axiom Mission 4 to deliver on a commitment highlighted by President Trump and Indian Prime Minister Narendra Modi to send the first ISRO astronaut to the station. The space agencies participated in five joint science investigations and two in-orbit science, technology, engineering, and mathematics demonstrations. NASA and ISRO have a long-standing relationship built on a shared vision to advance scientific knowledge and expand space collaboration.
      The private mission also carried the first astronauts from Poland and Hungary to stay aboard the space station.
      The International Space Station is a springboard for developing a low Earth orbit economy. NASA’s goal is to achieve a strong economy off the Earth where the agency can purchase services as one of many customers to meet its science and research objectives in microgravity. NASA’s commercial strategy for low Earth orbit provides the government with reliable and safe services at a lower cost, enabling the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.
      Learn more about NASA’s commercial space strategy at:
      https://www.nasa.gov/commercial-space

      News Media Contacts:
      Claire O’Shea 
      Headquarters, Washington 
      202-358-1100 
      claire.a.o’shea@nasa.gov

      Anna Schneider 
      Johnson Space Center, Houston 
      281-483-5111 
      anna.c.schneider@nasa.gov
      Facebook logo @NASA @NASA Instagram logo @NASA Linkedin logo @NASA View the full article
    • By NASA
      NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Alex Parker This image, taken by NASA’s New Horizons spacecraft on July 14, 2015, is the most accurate natural color image of Pluto. This natural-color image results from refined calibration of data gathered by New Horizons’ color Multispectral Visible Imaging Camera (MVIC). The processing creates images that would approximate the colors that the human eye would perceive, bringing them closer to “true color” than the images released near the encounter. This single color MVIC scan includes no data from other New Horizons imagers or instruments added. The striking features on Pluto are clearly visible, including the bright expanse of Pluto’s icy, nitrogen-and-methane rich “heart,” Sputnik Planitia.
      Image credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Alex Parker
      View the full article
    • By Amazing Space
      Massive Solar Prominence "The Beast" Threatens Eruption? Space Weather Update July 14 2025 NASA SDO
  • Check out these Videos

×
×
  • Create New...