Members Can Post Anonymously On This Site
NASA, Blue Origin Invite Media to New Glenn Launch of Mars Mission
-
Similar Topics
-
By NASA
4 Min Read NASA Marshall Fires Up Hybrid Rocket Motor to Prep for Moon Landings
NASA’s Artemis campaign will use human landing systems, provided by SpaceX and Blue Origin, to safely transport crew to and from the surface of the Moon, in preparation for future crewed missions to Mars. As the landers touch down and lift off from the Moon, rocket exhaust plumes will affect the top layer of lunar “soil,” called regolith, on the Moon. When the lander’s engines ignite to decelerate prior to touchdown, they could create craters and instability in the area under the lander and send regolith particles flying at high speeds in various directions.
To better understand the physics behind the interaction of exhaust from the commercial human landing systems and the Moon’s surface, engineers and scientists at NASA’s Marshall Space Flight Center in Huntsville, Alabama, recently test-fired a 14-inch hybrid rocket motor more than 30 times. The 3D-printed hybrid rocket motor, developed at Utah State University in Logan, Utah, ignites both solid fuel and a stream of gaseous oxygen to create a powerful stream of rocket exhaust.
“Artemis builds on what we learned from the Apollo missions to the Moon. NASA still has more to learn more about how the regolith and surface will be affected when a spacecraft much larger than the Apollo lunar excursion module lands, whether it’s on the Moon for Artemis or Mars for future missions,” said Manish Mehta, Human Landing System Plume & Aero Environments discipline lead engineer. “Firing a hybrid rocket motor into a simulated lunar regolith field in a vacuum chamber hasn’t been achieved in decades. NASA will be able to take the data from the test and scale it up to correspond to flight conditions to help us better understand the physics, and anchor our data models, and ultimately make landing on the Moon safer for Artemis astronauts.”
Fast Facts
Over billions of years, asteroid and micrometeoroid impacts have ground up the surface of the Moon into fragments ranging from huge boulders to powder, called regolith. Regolith can be made of different minerals based on its location on the Moon. The varying mineral compositions mean regolith in certain locations could be denser and better able to support structures like landers. Of the 30 test fires performed in NASA Marshall’s Component Development Area, 28 were conducted under vacuum conditions and two were conducted under ambient pressure. The testing at Marshall ensures the motor will reliably ignite during plume-surface interaction testing in the 60-ft. vacuum sphere at NASA’s Langley Research Center in Hampton, Virginia, later this year.
Once the testing at NASA Marshall is complete, the motor will be shipped to NASA Langley. Test teams at NASA Langley will fire the hybrid motor again but this time into simulated lunar regolith, called Black Point-1, in the 60-foot vacuum sphere. Firing the motor from various heights, engineers will measure the size and shape of craters the rocket exhaust creates as well as the speed and direction the simulated lunar regolith particles travel when the rocket motor exhaust hits them.
“We’re bringing back the capability to characterize the effects of rocket engines interacting with the lunar surface through ground testing in a large vacuum chamber — last done in this facility for the Apollo and Viking programs. The landers going to the Moon through Artemis are much larger and more powerful, so we need new data to understand the complex physics of landing and ascent,” said Ashley Korzun, principal investigator for the plume-surface interaction tests at NASA Langley. “We’ll use the hybrid motor in the second phase of testing to capture data with conditions closely simulating those from a real rocket engine. Our research will reduce risk to the crew, lander, payloads, and surface assets.”
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
Credit: NASA Through the Artemis campaign, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars – for the benefit of all.
For more information about Artemis, visit:
https://www.nasa.gov/artemis
News Media Contact
Corinne Beckinger
Marshall Space Flight Center, Huntsville, Ala.
256.544.0034
corinne.m.beckinger@nasa.gov
View the full article
-
By NASA
The New York Stock Exchange welcomed team members from NASA’s SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) mission to celebrate the launch of the agency’s newest astrophysics observatory to understand the origins and structure of the universe. Image courtesy of NYSE Group Members of NASA’s recently launched SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) mission team participated in the New York Stock Exchange’s closing bell ceremony in New York City on April 22.
Michael Thelen, SPHEREx flight system manager at NASA’s Jet Propulsion Laboratory in Southern California, is seen here ringing the closing bell. Additional SPHEREx team members from NASA JPL, which manages the mission, and BAE Systems Inc., Space & Mission Systems, which built the telescope and spacecraft bus for NASA, participated.
The SPHEREx observatory, which launched March 11 from Vandenberg Space Force Base in California on a SpaceX Falcon 9 rocket, will soon begin mapping the universe like none before it. Using 102 color filters to scan the entire sky quickly, SPHEREx will gather data on hundreds of millions of galaxies that will complement the work of more targeted telescopes, like NASA’s Hubble and James Webb space telescopes. Its surveys will help answer some of the biggest questions in astrophysics: what happened in the first second after the big bang, how galaxies form and evolve, and the origins and abundance of water and other key ingredients for life in our galaxy.
Michael P. Thelen, SPHEREx Observatory Flight System Manager, rings the bell alongside NASA SPHEREx team members at the New York Stock Exchange Tuesday, April 25, 2025. Image courtesy of NYSE Group More About SPHEREx
SPHEREx is managed by JPL for NASA’s Astrophysics Division within the Science Mission Directorate in Washington. BAE Systems (formerly Ball Aerospace) built the telescope and the spacecraft bus. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions across the U.S. and in South Korea. Data will be processed and archived at IPAC at Caltech, which manages JPL for NASA. The mission principal investigator is based at Caltech with a joint JPL appointment. The SPHEREx dataset will be publicly available.
For more information on SPHEREx, visit:
https://www.nasa.gov/spherex
News Media Contacts
Alise Fisher
NASA Headquarters, Washington
202-358-2546
alise.m.fisher@nasa.gov
Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.
626-808-2469
calla.e.cofield@jpl.nasa.gov
View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A Boeing-built X-66 full-span model underwent testing in the 11-Foot Transonic Unitary Plan Facility at NASA’s Ames Research Center in California’s Silicon Valley between January and March 2025.NASA / Brandon Torres NASA and Boeing are currently evaluating an updated approach to the agency’s Sustainable Flight Demonstrator project that would focus on demonstrating thin-wing technology with broad applications for multiple aircraft configurations.
Boeing’s proposed focus centers on a ground-based testbed to demonstrate the potential for long, thin-wing technology. Work on the X-66 flight demonstrator – which currently incorporates a more complex transonic truss braced wing concept that uses the same thin wing technology as well as aerodynamic, structural braces — would pause for later consideration based on the thin-wing testbed results and further truss-braced configuration studies.
Under this proposal, all aspects of the X-66 flight demonstrator’s design, as well as hardware acquired or modified for it, would be retained while the long, thin-wing technology is being investigated with more focus. NASA and Boeing would also continue to collaborate on research into the transonic truss-braced wing concept.
The proposal is based on knowledge gained through research conducted under the Sustainable Flight Demonstrator project so far.
Since NASA issued the Sustainable Flight Demonstrator award in 2023, the project has made significant progress toward its goal of informing future generations of more sustainable commercial airliners. Boeing and NASA have collaborated on wind tunnel tests, computational fluid dynamics modeling, and structural design and analysis aimed at exploring how best to approach fuel-efficient, sustainable designs.
This research has built confidence in the substantial potential energy-savings benefits that technologies investigated through the Sustainable Flight Demonstrator project and other NASA research can make possible. The Boeing proposal identifies the thin-wing concept as having broad applications for potential incorporation into aircraft with and without truss braces.
NASA and Boeing are discussing potential options for advancing these sustainable flight technologies. NASA’s ultimate goal for this sustainable aircraft research is to achieve substantial improvements for next-generation airliner efficiency, lower costs for travelers, reduced fuel costs and consumption, and increase U.S. aviation’s technological leadership.
Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASAes Instagram logo @NASA@NASAaero@NASAes Linkedin logo @NASA Explore More
4 min read NASA Tests Ultralight Antennas to Benefit Future National Airspace
Article 2 days ago 2 min read A Fond Farewell: NASA’s C-130 Begins New Mission in California
Article 6 days ago 3 min read NASA Studies Wind Effects and Aircraft Tracking with Joby Aircraft
Article 7 days ago Keep Exploring Discover More Topics From NASA
Missions
Sustainable Flight Demonstrator Project
Aeronautics STEM
Explore NASA’s History
Share
Details
Last Updated Apr 24, 2025 EditorLillian GipsonContactRobert Margettarobert.j.margetta@nasa.gov Related Terms
Aeronautics Aeronautics Research Mission Directorate Green Aviation Tech Integrated Aviation Systems Program Sustainable Flight Demonstrator View the full article
-
By NASA
NASA’s Nancy Grace Roman Space Telescope team shared Thursday the designs for the three core surveys the mission will conduct after launch. These observation programs are designed to investigate some of the most profound mysteries in astrophysics while enabling expansive cosmic exploration that will revolutionize our understanding of the universe.
“Roman’s setting out to do wide, deep surveys of the universe in a way that will help us answer questions about how dark energy and dark matter govern cosmic evolution, and the demographics of worlds beyond our solar system,” said Gail Zasowski, an associate professor at the University of Utah and co-chair of the ROTAC (Roman Observations Time Allocation Committee). “But the overarching goal is that the surveys have broad appeal and numerous science applications. They were designed by and for the astronomical community to maximize the science they’ll enable.”
NASA’s Nancy Grace Roman Space Telescope’s three main observing programs, highlighted in this infographic, can enable astronomers to view the universe as never before, revealing billions of cosmic objects strewn across enormous swaths of space-time.Credit: NASA’s Goddard Space Flight Center Roman’s crisp, panoramic view of space and fast survey speeds provide the opportunity for astronomers to study the universe as never before. The Roman team asked the science community to detail the topics they’d like to study through each of Roman’s surveys and selected committees of scientists across many organizations to evaluate the range of possibilities and formulate three compelling options for each.
In April, the Roman team received the recommendations and has now determined the survey designs. These observations account for no more than 75 percent of Roman’s surveys during its five-year primary mission, with the remainder allocated to additional observations that will be proposed and developed by the science community in later opportunities.
“These survey designs are the culmination of two years of input from more than 1,000 scientists from over 350 institutions across the globe,” said Julie McEnery, Roman’s senior project scientist at NASA Goddard. “We’re thrilled that we’ve been able to hear from so many of the people who’ll use the data after launch to investigate everything from objects in our outer solar system, planets across our galaxy, dark matter and dark energy, to exploding stars, growing black holes, galaxies by the billions, and so much more.”
With all major hardware now delivered, Roman has entered its final phase of preparation for launch, undergoing integration and key environmental testing at NASA Goddard. Roman is targeted to launch by May 2027, with the team working toward a potential launch window that opens in October 2026.
This infographic describes the High-Latitude Wide-Area Survey that will be conducted by NASA’s Nancy Grace Roman Space Telescope. This observation program has three components, covering more than 5,000 square degrees (about 12 percent of the sky) altogether in just under a year and a half. The main part covers about 2,500 square degrees, doing both spectroscopy (splitting light into individual colors to study patterns that reveal detailed information) and imaging in multiple filters (which allow astronomers to select specific wavelengths of light) to provide the rich dataset needed for precise studies of our universe. A wider component spans more than twice the area using a single filter, specifically covering a large area that can be viewed by ground-based telescopes located in both the northern and southern hemispheres. The final component focuses on a smaller region to provide a deeper view that will help astronomers study faint, distant galaxies.Credit: NASA’s Goddard Space Flight Center High-Latitude Wide-Area Survey
Roman’s largest survey, the High-Latitude Wide-Area Survey, combines the powers of imaging and spectroscopy to unveil more than a billion galaxies strewn across a wide swath of cosmic time. Roman can look far from the dusty plane of our Milky Way galaxy (that’s what the “high-latitude” part of the survey name means), looking up and out of the galaxy rather than through it to get the clearest view of the distant cosmos.
The distribution and shapes of galaxies in Roman’s enormous, deep images can help us understand the nature of dark energy — a pressure that seems to be speeding up the universe’s expansion — and how invisible dark matter, which Roman will detect by its gravitational effects, influences the evolution of structure in our universe.
For the last two years, researchers have been discussing ways to expand the range of scientific topics that can be studied using the same dataset. That includes studying galaxy evolution, star formation, cosmic voids, the matter between galaxies, and much more.
This infographic describes the High-Latitude Time-Domain Survey that will be conducted by NASA’s Nancy Grace Roman Space Telescope. The survey’s main component covers over 18 square degrees — a region of sky as large as 90 full moons — and sees supernovae that occurred up to about 8 billion years ago. Smaller areas within the survey can pierce even farther, potentially back to when the universe was around a billion years old. The survey is split between the northern and southern hemispheres, located in regions of the sky that will be continuously visible to Roman. The bulk of the survey consists of 30-hour observations every five days for two years in the middle of Roman’s five-year primary mission.Credit: NASA’s Goddard Space Flight Center High-Latitude Time-Domain Survey
Roman’s High-Latitude Time-Domain Survey can probe our dynamic universe by observing the same region of the cosmos repeatedly. Stitching these observations together to create movies can allow scientists to study how celestial objects and phenomena change over time periods of days to years.
This survey can probe dark energy by finding and studying many thousands of a special type of exploding star called type Ia supernovae. These stellar cataclysms allow scientists to measure cosmic distances and trace the universe’s expansion.
“Staring at a large volume of the sky for so long will also reveal black holes being born as neutron stars merge, and tidal disruption events –– flares released by stars falling into black holes,” said Saurabh Jha, a professor at Rutgers University in New Brunswick, New Jersey, and ROTAC co-chair. “It will also allow astronomers to explore variable objects, like active galaxies and binary systems. And it enables more open-ended cosmic exploration than most other space telescopes can do, offering a chance to answer questions we haven’t yet thought to ask.”
This infographic describes the Galactic Bulge Time-Domain Survey that will be conducted by NASA’s Nancy Grace Roman Space Telescope. The smallest of Roman’s core surveys, this observation program consists of repeat visits to six fields covering 1.7 square degrees total. One field pierces the very center of the galaxy, and the others are nearby — all in a region of the sky that will be visible to Roman for two 72-day stretches each spring and fall. The survey mainly consists of six seasons (three early on, and three toward the end of Roman’s primary mission), during which Roman views each field every 12 minutes. Roman also views the six fields with less intensity at other times throughout the mission, allowing astronomers to detect microlensing events that can last for years, signaling the presence of isolated, stellar-mass black holes.Credit: NASA’s Goddard Space Flight Center Galactic Bulge Time-Domain Survey
Unlike the high-latitude surveys, Roman’s Galactic Bulge Time-Domain Survey will look inward to provide one of the deepest views ever of the heart of our Milky Way galaxy. Roman’s crisp resolution and infrared view can allow astronomers to watch hundreds of millions of stars in search of microlensing signals — gravitational boosts of a background star’s light that occur when an intervening object passes nearly in front of it. While astronomers have mainly discovered star-hugging worlds, Roman’s microlensing observations can find planets in the habitable zone of their star and farther out, including analogs of every planet in our solar system except Mercury.
The same set of observations can reveal “rogue” planets that drift through the galaxy unbound to any star, brown dwarfs (“failed stars” too lightweight to power themselves by fusion the way stars do), and stellar corpses like neutron stars and white dwarfs. And scientists could discover 100,000 new worlds by seeing stars periodically get dimmer as an orbiting planet passes in front of them, events called transits. Scientists can also study the stars themselves, detecting “starquakes” on a million giant stars, the result of sound waves reverberating through their interiors that can reveal information about their structures, ages, and other properties.
Data from all of Roman’s surveys will be made public as soon as it is processed, with no periods of exclusive access.
“Roman’s unprecedented data will offer practically limitless opportunities for astronomers to explore all kinds of cosmic topics,” McEnery said. “We stand to learn a tremendous amount of new information about the universe very rapidly after the mission launches.”
Download high-resolution video and images from NASA’s Scientific Visualization Studio
By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media contact:
Claire Andreoli
NASA’s Goddard Space Flight Center, Greenbelt, Md.
301-286-1940
Share
Details
Last Updated Apr 24, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationNASA Goddard Space Flight Center Related Terms
Nancy Grace Roman Space Telescope Black Holes Dark Energy Dark Matter Earth-like Exoplanets Exoplanets Galaxies Gas Giant Exoplanets Neptune-Like Exoplanets Neutron Stars Stars Stellar-mass Black Holes Super-Earth Exoplanets Supernovae Terrestrial Exoplanets The Milky Way The Solar System The Universe Explore More
6 min read Team Preps to Study Dark Energy via Exploding Stars With NASA’s Roman
Article 1 month ago 6 min read How NASA’s Roman Space Telescope Will Chronicle the Active Cosmos
Article 1 year ago 6 min read Why NASA’s Roman Mission Will Study Milky Way’s Flickering Lights
Article 2 years ago View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s Curiosity rover appears as a dark speck in this contrast-enhanced view captured on Feb. 28, 2025, by the HiRISE camera aboard NASA’s Mars Reconnaissance Orbiter. Trailing Curiosity are the rover’s tracks, which can linger on the Martian surface for months before being erased by the wind. NASA/JPL-Caltech/University of Arizona The image marks what may be the first time one of the agency’s Mars orbiters has captured the rover driving.
NASA’s Curiosity Mars rover has never been camera shy, having been seen in selfies and images taken from space. But on Feb. 28 — the 4,466th Martian day, or sol, of the mission — Curiosity was captured in what is believed to be the first orbital image of the rover mid-drive across the Red Planet.
Taken by the HiRISE (High-Resolution Imaging Science Experiment) camera aboard NASA’s Mars Reconnaissance Orbiter, the image shows Curiosity as a dark speck at the front of a long trail of rover tracks. Likely to last for months before being erased by wind, the tracks span about 1,050 feet (320 meters). They represent roughly 11 drives starting on Feb. 2 as Curiosity trucked along at a top speed of 0.1 mph (0.16 kph) from Gediz Vallis channel on the journey to its next science stop: a region with potential boxwork formations, possibly made by groundwater billions of years ago.
How quickly the rover reaches the area depends on a number of factors, including how its software navigates the surface and how challenging the terrain is to climb. Engineers at NASA’s Jet Propulsion Laboratory in Southern California, which leads Curiosity’s mission, work with scientists to plan each day’s trek.
“By comparing the time HiRISE took the image to the rover’s commands for the day, we can see it was nearly done with a 69-foot drive,” said Doug Ellison, Curiosity’s planning team chief at JPL.
Designed to ensure the best spatial resolution, HiRISE takes an image with the majority of the scene in black and white and a strip of color down the middle. While the camera has captured Curiosity in color before, this time the rover happened to fall within the black-and-white part of the image.
In the new image, Curiosity’s tracks lead to the base of a steep slope. The rover has since ascended that slope since then, and it is expected to reach its new science location within a month or so.
More About Curiosity and MRO
NASA’s Curiosity Mars rover was built at JPL, which is managed for the agency by Caltech in Pasadena, California. JPL manages both the Curiosity and Mars Reconnaissance Orbiter missions on behalf of NASA’s Science Mission Directorate in Washington as part of the agency’s Mars Exploration Program portfolio. The University of Arizona, in Tucson, operates HiRISE, which was built by BAE Systems in Boulder, Colorado.
For more about the missions, visit:
science.nasa.gov/mission/msl-curiosity
science.nasa.gov/mission/mars-reconnaissance-orbiter
News Media Contacts
Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
2025-059
Share
Details
Last Updated Apr 24, 2025 Related Terms
Mars Science Laboratory (MSL) Curiosity (Rover) Mars Mars Reconnaissance Orbiter (MRO) Explore More
5 min read Eye on Infinity: NASA Celebrates Hubble’s 35th Year in Orbit
In celebration of the Hubble Space Telescope’s 35 years in Earth orbit, NASA is releasing…
Article 1 day ago 3 min read NASA’s Curiosity Rover May Have Solved Mars’ Missing Carbonate Mystery
Article 7 days ago 6 min read NASA’s Perseverance Mars Rover Studies Trove of Rocks on Crater Rim
Article 2 weeks ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.