Jump to content

NASA, Blue Origin Invite Media to New Glenn Launch of Mars Mission


NASA

Recommended Posts

  • Publishers
NASA’s ESCAPADE (Escape and Plasma Acceleration and Dynamics Explorers) identical dual spacecraft are inspected and processed on dollies in a high bay of the Astrotech Space Operations Facility near the agency’s Kennedy Space Center in Florida on Thursday, Aug. 22. As the first multi-spacecraft orbital science mission to Mars, ESCAPADE’s twin orbiters will take simultaneous observations from different locations around the planet and reveal the real-time response to space weather and how the Martian magnetosphere changes over time.
NASA’s ESCAPADE (Escape and Plasma Acceleration and Dynamics Explorers) identical dual spacecraft are inspected and processed on dollies in a high bay of the Astrotech Space Operations Facility near the agency’s Kennedy Space Center in Florida on Thursday, Aug. 22. As the first multi-spacecraft orbital science mission to Mars, ESCAPADE’s twin orbiters will take simultaneous observations from different locations around the planet and reveal the real-time response to space weather and how the Martian magnetosphere changes over time.
Credits: NASA/Kim Shiflett

NASA and Blue Origin are preparing for the agency’s ESCAPADE (Escape and Plasma Acceleration and Dynamics Explorers) mission, which begins on the inaugural launch of the company’s New Glenn rocket. The mission will study the solar wind’s interaction with the magnetosphere on Mars.

Blue Origin is targeting no earlier than Sunday, Oct. 13, for the launch of New Glenn-1 from Space Launch Complex 36 at Cape Canaveral Space Force Station in Florida.

Media interested in covering ESCAPADE launch activities for both NASA and Blue Origin must apply for media credentials. Deadlines for accreditation are as follows:

  • U.S. media and U.S. citizens representing international media must apply by 5 p.m. EDT on Monday, Sept. 30.
  • International media without U.S. citizenship must apply by 5 p.m. on Tuesday, Sept. 10.

Media accreditation requests should be submitted online at:

https://media.ksc.nasa.gov

A copy of NASA’s media accreditation policy is available online. For questions about accreditation, please email: ksc-media-accreditat@mail.nasa.gov. For other mission questions, please contact NASA Kennedy’s newsroom: 321-867-2468.

The ESCAPADE mission will use two identical spacecraft to investigate how the solar wind interacts with the hybrid magnetosphere on Mars and how this interaction drives the planet’s atmospheric escape. The mission is funded by NASA’s Heliophysics Division and is part of the NASA Small Innovative Missions for Planetary Exploration program. The ESCAPADE mission is led by the University of California, Berkeley’s Space Sciences Laboratory, and the spacecraft is designed by Rocket Lab. The agency’s Launch Services Program, based at NASA Kennedy, secured the launch service under the VADR (Venture-class Acquisition of Dedicated and Rideshare) contract.

NASA will post updates on launch preparations for the twin Martian orbiters on the ESCAPADE blog.

For more information about ESCAPADE, visit:

https://science.nasa.gov/mission/escapade

Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo at: antonia.jaramillobotero@nasa.gov, 321-501-8425, o Messod Bendayan, 256-930-1371.

-end-

Karen Fox
Headquarters, Washington
202-358-1600
karen.fox@nasa.gov

Laura Aguiar / Leejay Lockhart
Kennedy Space Center, Florida
321-867-2468
laura.aguiar@nasa.gov / leejay.lockhart@nasa.gov

Sarah Frazier
Goddard Space Flight Center
202-853-7191
sarah.frazier@nasa.gov

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA and Boeing welcomed Starliner back to Earth following the uncrewed spacecraft’s successful landing at 10:01 p.m. MDT Sept. 6, 2024, at the White Sands Space Harbor in New Mexico. Credit: NASA NASA and Boeing safely returned the uncrewed Starliner spacecraft following its landing at 10:01 p.m. MDT Sept. 6 at White Sands Space Harbor in New Mexico, concluding a three-month flight test to the International Space Station.
      “I am extremely proud of the work our collective team put into this entire flight test, and we are pleased to see Starliner’s safe return,” said Ken Bowersox, associate administrator, Space Operations Mission Directorate at NASA Headquarters in Washington. “Even though it was necessary to return the spacecraft uncrewed, NASA and Boeing learned an incredible amount about Starliner in the most extreme environment possible. NASA looks forward to our continued work with the Boeing team to proceed toward certification of Starliner for crew rotation missions to the space station.”
      The flight on June 5 was the first time astronauts launched aboard the Starliner. It was the third orbital flight of the spacecraft, and its second return from the orbiting laboratory. Starliner now will ship to NASA’s Kennedy Space Center in Florida for inspection and processing.
      NASA’s Commercial Crew Program requires a spacecraft to fly a crewed test flight to prove the system is ready for regular flights to and from the orbiting laboratory. Following Starliner’s return, the agency will review all mission-related data.
      “We are excited to have Starliner home safely. This was an important test flight for NASA in setting us up for future missions on the Starliner system,” said Steve Stich, manager of NASA’s Commercial Crew Program. “There was a lot of valuable learning that will enable our long-term success. I want to commend the entire team for their hard work and dedication over the past three months.”
      NASA astronauts Butch Wilmore and Suni Williams launched on June 5 aboard Starliner for the agency’s Boeing Crewed Flight Test from Cape Canaveral Space Force Station in Florida. On June 6, as Starliner approached the space station, NASA and Boeing identified helium leaks and experienced issues with the spacecraft’s reaction control thrusters. Following weeks of in-space and ground testing, technical interchange meetings, and agency reviews, NASA made the decision to prioritize safety and return Starliner without its crew. Wilmore and Williams will continue their work aboard station as part of the Expedition 71/72 crew, returning in February 2025 with the agency’s SpaceX Crew-9 mission.
      The crew flight test is part of NASA’s Commercial Crew Program. The goal of NASA’s Commercial Crew Program is safe, reliable, and cost-effective transportation to and from the International Space Station and low Earth orbit. This already is providing additional research time and has increased the opportunity for discovery aboard humanity’s microgravity testbed, including helping NASA prepare for human exploration of the Moon and Mars.
      Learn more about NASA’s Commercial Crew program at:
      https://www.nasa.gov/commercialcrew
      -end-
      Joshua Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Leah Cheshier
      Johnson Space Center, Houston
      281-483-5111
      leah.d.cheshier@nasa.gov
      Steve Siceloff / Danielle Sempsrott / Stephanie Plucinsky
      Kennedy Space Center, Florida
      321-867-2468
      steven.p.siceloff@nasa.gov / danielle.c.sempsrott@nasa.gov / stephanie.n.plucinsky@nasa.gov
      Share
      Details
      Last Updated Sep 07, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Commercial Crew International Space Station (ISS) ISS Research View the full article
    • By NASA
      The Roscosmos Soyuz MS-26 spacecraft will launch from the Baikonur Cosmodrome in Kazakhstan to the International Space Station with (pictured left to right) NASA astronaut Don Pettit and Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner.Credit: Gagarin Cosmonaut Training Center NASA astronaut Don Pettit will launch aboard the Roscosmos Soyuz MS-26 spacecraft, accompanied by cosmonauts Alexey Ovchinin and Ivan Vagner, to the International Space Station where they will join the Expedition 71 crew in advancing scientific research.
      Pettit, Ovchinin, and Vagner will lift off at 12:23 p.m. EDT Wednesday, Sept. 11 (9:23 p.m. Baikonur time) from the Baikonur Cosmodrome in Kazakhstan.
      Coverage will stream on NASA+, the NASA app, and the agency’s website. Learn how to stream NASA content through a variety of platforms including social media.
      After a two-orbit, three-hour trajectory to the station, the spacecraft will automatically dock at 3:33 p.m. at the orbiting laboratory’s Rassvet module. Shortly after, hatches will open between the spacecraft and the station.
      Once aboard, the trio will join NASA astronauts Tracy C. Dyson, Mike Barratt, Matthew Dominick, Jeanette Epps, Butch Wilmore, and Suni Williams, as well as Roscosmos cosmonauts Nikolai Chub, Alexander Grebenkin, and Oleg Kononenko.
      NASA’s coverage is as follows (all times Eastern and subject to change based on real-time operations):
      11:15 a.m. – Launch coverage begins on NASA+, the NASA app, YouTube, and the agency’s website.
      12:23 p.m. – Launch
      2:30 p.m. – Rendezvous and docking coverage begins on NASA+, the NASA app, YouTube, and the agency’s website.
      3:33 p.m. – Docking
      5:30 p.m. – Hatch opening and welcome remarks coverage begins on NASA+, the NASA app, YouTube, and the agency’s website.
      5:50 p.m. – Hatch opening
      The trio will spend approximately six months aboard the orbital laboratory as Expedition 71 and 72 crew members before returning to Earth in the spring of 2025. This will be the fourth spaceflight for Pettit and Ovchinin, and the second for Vagner.
      For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge, and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA is focusing more resources on deep space missions to the Moon as part of Artemis in preparation for future human missions to Mars.
      Learn more about International Space Station research and operations at:
      https://www.nasa.gov/station
      -end-
      Joshua Finch / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Sep 06, 2024 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Astronauts Donald R. Pettit Humans in Space ISS Research Johnson Space Center View the full article
    • By NASA
      Artist’s rendering of NASA’s Europa Clipper spacecraft. Credit: NASA/JPL-Caltech NASA will hold a media teleconference at 4 p.m. EDT, Monday, Sept. 9, to provide an update on Europa Clipper, a mission that will study whether Jupiter’s moon Europa could be hospitable to life. The teleconference will occur after a key decision point meeting earlier that day regarding next steps for the mission.
      Audio of the teleconference will stream live on the agency’s website at:
      https://www.nasa.gov/live
      Participants in the teleconference include:
      Nicola Fox, associate administrator, Science Mission Directorate, NASA Headquarters Laurie Leshin, center director, NASA’s Jet Propulsion Laboratory Curt Niebur, Europa Clipper program scientist, NASA Headquarters Jordan Evans, Europa Clipper project manager, NASA’s Jet Propulsion Laboratory To ask questions during the teleconference, media must RSVP no later than two hours before the event to Molly Wasser at: molly.l.wasser@nasa.gov. NASA’s media accreditation policy is available online.
      Europa Clipper’s main science goal is to determine whether there are places below the surface of Jupiter’s icy moon that could support life. The mission’s objectives are to understand the nature of Europa’s ice shell and the ocean beneath it, as well as to study the moon’s composition and geology. A detailed exploration of Europa also will help astrobiologists better understand the potential for habitable worlds beyond our planet.
      To learn more about Europa Clipper, visit: 
      https://europa.nasa.gov
      -end- 
      Karen Fox / Molly Wasser
      Headquarters, Washington 
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov

      Gretchen McCartney
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-6215
      gretchen.p.mccartney@jpl.nasa.gov
      Share
      Details
      Last Updated Sep 06, 2024 LocationNASA Headquarters Related Terms
      Europa Clipper Jupiter Science Mission Directorate View the full article
    • By European Space Agency
      Video: 00:01:00 Rover trials in a quarry in the UK showing a four-wheeled rover, known as Codi, using its robotic arm and a powerful computer vision system to pick up sample tubes. 
      The rover drives to the samples with an accuracy of 10cm, constantly mapping the terrain. Codi uses its arm and four cameras to locate the sample tube, retrieve it and safely store it on the rover – all of it without human intervention. At every stop, the rover uses stereo cameras to build up a 180-degree map of the surroundings and plan its next maneouvres. Once parked, the camera on top of the mast detects the tube and estimates its position with respect to the rover. The robotic arm initiates a complex choreography to move closer to the sample, fetch it and store it. 
      The sample tubes are a replica of the hermetically sealed samples inside which NASA’s Perseverance rover is collecting precious martian soil inside. To most people on Earth, they resemble lightsabres.
      The reddish terrain, although not fully representative of Mars in terms of soil composition, has plenty of slopes and rocks of different sizes, similar to what a rover might encounter on the martian surface. Quarry testing is an essential next step in the development process, providing a unique and dynamic landscape that cannot be replicated indoors. 
      ESA continues to run further research using the rover to maintain and develop rover capabilities in Europe.
      Read the full article: Rovers, lightsabres and a piglet.
      View the full article
    • By NASA
      On the left, the Canopee transport carrier containing the European Service Module for NASA’s Artemis III mission arrives at Port Canaveral in Florida, on Tuesday, Sept. 3, 2024, before completing the last leg of its journey to the agency’s Kennedy Space Center’s Neil A. Armstrong Operations and Checkout via truck. On the right, NASA’s Pegasus barge, carrying several pieces of hardware for Artemis II, III, and IV arrives at NASA Kennedy’s Launch Complex 39 turn basin wharf on Thursday, Sept. 5, 2024. Credit: NASA From across the Atlantic Ocean and through the Gulf of Mexico, two ships converged, delivering key spacecraft and rocket components of NASA’s Artemis campaign to the agency’s Kennedy Space Center in Florida.
      On Sept. 3, ESA (European Space Agency) marked a milestone in the Artemis III mission as its European-built service module for NASA’s Orion spacecraft completed a transatlantic journey from Bremen, Germany, to Port Canaveral, Florida, where technicians moved it to nearby NASA Kennedy. Transported aboard the Canopée cargo ship, the European Service Module—assembled by Airbus with components from 10 European countries and the U.S.—provides propulsion, thermal control, electrical power, and water and oxygen for its crews.
      “Seeing multi-mission hardware arrive at the same time demonstrates the progress we are making on our Artemis missions,” said Amit Kshatriya, deputy associate administrator, Moon to Mars Program, at NASA Headquarters in Washington. “We are going to the Moon together with our industry and international partners and we are manufacturing, assembling, building, and integrating elements for Artemis flights.”
      NASA’s Pegasus barge, the agency’s waterway workhorse for transporting large hardware by sea, ferried multi-mission hardware for the agency’s SLS (Space Launch System) rocket, the Artemis II launch vehicle stage adapter, the “boat-tail” of the core stage for Artemis III, the core stage engine section for Artemis IV, along with ground support equipment needed to move and assemble the large components. The barge pulled into NASA Kennedy’s Launch Complex 39B Turn Basin Thursday.
      The spacecraft factory inside NASA Kennedy’s Neil Armstrong Operations and Checkout Building is set to buzz with additional activity in the coming months. With the Artemis II Orion crew and service modules stacked together and undergoing testing, and engineers outfitting the Artemis III and IV crew modules, engineers soon will connect the newly arrived European Service Module to the crew module adapter, which houses electronic equipment for communications, power, and control, and includes an umbilical connector that bridges the electrical, data, and fluid systems between the crew and service modules.
      The SLS rocket’s cone-shaped launch vehicle stage adapter connects the core stage to the upper stage and protects the rocket’s flight computers, avionics, and electrical devices in the upper stage system during launch and ascent. The adapter will be taken to Kennedy’s Vehicle Assembly Building in preparation for Artemis II rocket stacking operations.
      The boat-tail, which will be used during the assembly of the SLS core stage for Artemis III, is a fairing-like structure that protects the bottom end of the core stage and RS-25 engines. This hardware, picked up at NASA’s Michoud Assembly Facility in New Orleans, will join the Artemis III core stage engine section housed in the spaceport’s Space Systems Processing Facility.
      The Artemis IV SLS core stage engine section arrived from NASA Michoud and also will transfer to the center’s processing facility ahead of final assembly.
      Under the Artemis campaign, NASA will land the first woman, first person of color, and its first international partner astronaut on the lunar surface, establishing long-term exploration for scientific discovery and preparing for human missions to Mars. The agency’s SLS rocket and Orion spacecraft, and supporting ground systems, along with the human landing system, next-generation spacesuits and rovers, and Gateway, serve as NASA’s foundation for deep space exploration.
      For more information on NASA’s Artemis missions, visit:
      https://www.nasa.gov/artemis
      -end-
      Rachel Kraft
      Headquarters, Washington
      202-358-1600
      Rachel.h.kraft@nasa.gov
      Allison Tankersley, Antonia Jaramillo Botero
      Kennedy Space Center, Florida
      321-867-2468
      Allison.p.tankersley@nasa.gov/ antonia.jaramillobotero@nasa.gov
      View the full article
  • Check out these Videos

×
×
  • Create New...