Jump to content

Talented Teams Tackle Toasty Planet


NASA

Recommended Posts

  • Publishers
4 Min Read

Talented Teams Tackle Toasty Planet

The image depicts a celestial scene, with a bright, luminous star dominating the background. In the center of the image, a small, dark, rocky planet is seen transiting in front of the star, creating a stark contrast between the bright light of the star and the silhouette of the planet. Surrounding the star and planet, the background is filled with countless tiny stars scattered across the vast expanse of space. The star appears to radiate a soft glow, with a bright halo of light around it, emphasizing the planet's position as it passes in front of the star. The overall scene evokes a sense of the vastness and beauty of the cosmos.
Simulation of a planet transiting its host star by Exoplanet Watch volunteer Guiseppe Conzo.
Credits:
Guiseppe Conzo

Exoplanets, look out! Two NASA-funded teams of amateur astronomers are tracking you with their backyard telescopes. 

These two teams, called UNITE (UNISTELLAR Network Investigating TESS Exoplanets) and Exoplanet Watch, have combined forces to confirm a new planetary discovery—a toasty “warm Jupiter”.  

“I pinch myself every day when I recall that I have made a meaningful scientific contribution to astronomy by helping professional astronomers confirm and characterize a new exoplanet,” said Darren Rivett, a volunteer from Australia who contributed to the effort. 

Planets around other stars, called exoplanets, sometimes block the light from the stars they orbit. When this happens, it’s called a “transit”. Amateur astronomers can observe exoplanet transits with their own telescopes by watching for the light from a nearby star to dim.  

NASA’s Transiting Exoplanet Survey Satellite (TESS) sees these dimming events, too—many thousands of them. But just seeing a star dim once is not enough. You need to catch multiple dimming events (and perform various other checks) to know that you’ve found a new exoplanet.

That’s where volunteers from the UNITE and Exoplanet Watch projects come in.

These two teams of amateur astronomers have collaborated with the SETI Institute to detect the transit of an object called TIC 393818343 b (aka TOI 6883 b)—proving to the world that this object does indeed contain a planet orbiting a star.  

First, the UNISTELLAR and SETI Institute team saw a single transit signal detected by the TESS space telescope. They gathered data to predict when the planet would transit again. They then alerted the UNITE and Exoplanet Watch amateurs to help observe the host star for signs of a transiting planet during the predicted time. The observations from the two networks showed two new transit detections, confirming the predictions, and demonstrating that a planet indeed causes the signals.

This newly discovered giant planet falls into the “warm Jupiter” category of exoplanets,  meaning it orbits closer to its host star than Jupiter, or even the Earth does. Astronomers have even predicted that it might, under certain circumstances, migrate still further inward toward its star to become a “hot Jupiter.” Hot or not, thanks to some terrific teamwork, we are now one step closer to understanding the population of planets that lies outside our own Solar System. The news is now published in the Astronomical Journal, and all the citizen scientists involved, including a high school student, are co-authors on this scientific publication, “Confirmation and Characterization of the Eccentric, Warm Jupiter TIC 393818343 b with a Network of Citizen Scientists”.

UNITE (UNISTELLAR Network Investigating TESS Exoplanets) uses the global network of observers with UNISTELLAR telescopes to gather data on TESS exoplanet candidates and long-duration exoplanet transits. To get involved, no matter what kind of telescope you have, visit https://science.unistellar.com/exoplanets/unite/ or reach out to citizenscience@unistellaroptics.com.

Participation is open to everyone, regardless of citizenship. “What I find amazing about the NASA citizen science project is that they involve people from all around the world contributing meaningful observation data that leads to incredible discoveries!” Sophie Saibi, a high school student from California who participated. “Researching as a citizen scientist is something I highly recommend to anyone who gazes at the night sky with awe and wonder,” said Rivett.

Congratulations to everyone on the team! The amateur astronomers who coauthored this paper are listed below.

  • Mario Billiani
  • Robert Gagliano
  • Martti H. Kristiansen
  • Thomas Lee Jacobs
  • Daryll M. LaCourse
  • Georgios Lekkas
  • Margaret Loose
  • Bryan Martin
  • Nicola Meneghelli
  • Mark Omohundro
  • Darren Rivett
  • Fadi Saibi
  • Sophie Saibi 
  • Hans M. Schwengeler
  • Ivan A. Terentev
  • Daniel Zaharevitz

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Artists Concept of the WASP-77 A b system. A planet swings in front of its star, dimming the starlight we see. Events like these, called transits, provide us with bounties of information about exoplanets–planets around stars other than the Sun. But predicting when these special events occur can be challenging…unless you have help from volunteers.
      Luckily, a collaboration of multiple teams of amateur planet-chasers, led by researcher Federico R. Noguer from Arizona State University and researchers from NASA’s Jet Propulsion Laboratory (JPL) and Goddard Space Flight Center (GSFC), has taken up the challenge. This collaboration has published the most precise physical and orbital parameters to date for an important exoplanet called WASP-77 A b.  These precise parameters help us predict future transit events and are crucial for planning spacecraft observations and accurate atmospheric modeling. 
      “As a retired dentist and now citizen scientist for Exoplanet Watch, research opportunities like this give me a way to learn and contribute to this amazingly exciting field of astrophysics,” said Anthony Norris, a citizen scientist working on the NASA-funded Exoplanet Watch project.
      The study combined amateur astronomy/citizen science data from the Exoplanet Watch and ExoClock projects, as well as the Exoplanet Transit Database. It also incorporated data from NASA’s Spitzer Space Telescope, the Hubble Space Telescope (HST), the James Webb Space Telescope (JWST), and La Silla Observatory. Exoplanet Watch invites volunteers to participate in groundbreaking exoplanet research, using their own telescopes to observe exoplanets or by analyzing data others have gathered. You may have read another recent article about how the Exoplanet Watch team helped validate a new exoplanet candidate.
      WASP-77 A b is a gas giant exoplanet that orbits a Sun-like star. It’s only about 20% larger than Jupiter. But that’s where the similarities to our solar system end. This blazing hot gas ball orbits right next to its star–more than 200 times closer to its star than our Jupiter!
      Want a piece of the action? Join the Exoplanet Watch project and help contribute to cutting-edge exoplanet science! Anyone can participate–participation does not require citizenship in any particular country.
      Facebook logo @DoNASAScience @DoNASAScience Share








      Details
      Last Updated Sep 19, 2024 Related Terms
      Astrophysics Citizen Science Exoplanet Science Explore More
      4 min read NASA’s Webb Provides Another Look Into Galactic Collisions


      Article


      1 day ago
      4 min read NASA’s Hubble Finds More Black Holes than Expected in the Early Universe


      Article


      2 days ago
      2 min read Hubble Examines a Spiral Star Factory


      Article


      6 days ago
      View the full article
    • By European Space Agency
      Swatch has again teamed up with ESA to give space fans a new opportunity to design a custom watch featuring breathtaking images of Earth from space.
      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
      Sols 4295-4296: A Martian Moon and Planet Earth
      Using an onboard focusing process, the Mars Hand Lens Imager (MAHLI) aboard NASA’s Mars rover Curiosity created this product by merging two to eight images previously taken by the MAHLI, which is located on the turret at the end of the rover’s robotic arm. Curiosity performed the merge on Sept. 4, 2024, at 06:30:48 UTC — sol 4294, or Martian day 4,294 of the Mars Science Laboratory mission. The onboard focus merge is sometimes performed on images acquired the same sol as the merge, and sometimes using pictures obtained earlier. Focus merging is a method to make a composite of images of the same target acquired at different focus positions to bring as many features as possible into focus in a single image. The MAHLI focus merge also serves as a means to reduce the number of images sent back to Earth. Each focus merge produces two images: a color, best-focus product and a black-and-white image that scientists can use to estimate focus position for each element of the best-focus product. So up to eight images can be merged, but the number of images returned to Earth is two. NASA/JPL-Caltech/MSSS Earth planning date: Wednesday, Sept. 4, 2024
      Today’s two-sol plan contains the usual science blocks filled with contact science and remote science to observe and assess the geology surrounding us. However, the Mastcam team is hoping to capture a special celestial event above the Martian skyline as one of Mars’ moons, Phobos, will be in conjunction with Earth on the evening of the first sol of this plan. So everyone look up, and smile for the camera!
      Coming back to our beautiful workspace, in this plan there is a focus on targeting the different colors and tones we can see in the bedrock with our suite of instruments. In the image above we can see some of these varying tones — including gray areas, lighter-toned areas, and areas of tan-colored bedrock — with an image from the MAHLI instrument, Curiosity’s onboard hand lens.
      APXS is targeting “Campfire Lake,” a lighter-toned area, and “Gemini,” a more gray-toned area situated in front of the rover. MAHLI is taking a suite of close-up images of these targets too. ChemCam is then taking two LIBS measurements of “Crazy Lake” and “Foolish Lake,” both of which appear to have lighter tones. Mastcam is documenting this whole area with a workspace mosaic and an 8×2 mosaic of “Picture Puzzle,” named after the rock in the image above that was taken during the previous plan. Mastcam will also be capturing a 6×3 mosaic of an outcrop named “Outguard Spire” that has an interesting gray rim. Looking further afield, ChemCam has planned a long-distance RMI image of the yardang unit and Navcam is taking a suprahorizon movie and dust-devil survey for our continued observations of the atmosphere to round out this plan.
      Written by Emma Harris, Graduate Student at Natural History Museum, London
      Share








      Details
      Last Updated Sep 05, 2024 Related Terms
      Blogs Explore More
      2 min read Sol 4294: Return to McDonald Pass


      Article


      15 hours ago
      3 min read Sols 4291-4293: Fairview Dome, the Sequel


      Article


      16 hours ago
      3 min read Behind the Scenes at the 2024 Mars 2020 Science Team Meeting
      The Mars 2020 Science Team meets in Pasadena for 3 days of science synthesis


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      4 Min Read Eclipses Create Atmospheric Gravity Waves, NASA Student Teams Confirm
      In this photo taken from the International Space Station, the Moon passes in front of the Sun casting its shadow, or umbra, and darkening a portion of the Earth's surface above Texas during the annular solar eclipse Oct. 14, 2023. Credits: NASA Student teams from three U.S. universities became the first to measure what scientists have long predicted: eclipses can generate ripples in Earth’s atmosphere called atmospheric gravity waves. The waves’ telltale signature emerged in data captured during the North American annular solar eclipse on Oct. 14, 2023, as part of the Nationwide Eclipse Ballooning Project (NEBP) sponsored by NASA.
      Through NEBP, high school and university student teams were stationed along the eclipse path through multiple U.S. states, where they released weather balloons carrying instrument packages designed to conduct engineering studies or atmospheric science. A cluster of science teams located in New Mexico collected the data definitively linking the eclipse to the formation of atmospheric gravity waves, a finding that could lead to improved weather forecasting.
      “Climate models are complicated, and they make some assumptions about what atmospheric factors to take into account.”
      Angela Des Jardins
      Director of the Montana Space Grant Consortium, which led NEBP.
      “Understanding how the atmosphere reacts in the special case of eclipses helps us better understand the atmosphere, which in turn helps us make more accurate weather predictions and, ultimately, better understand climate change.”
      Catching Waves in New Mexico
      Previous ballooning teams also had hunted atmospheric gravity waves during earlier eclipses, research that was supported by NASA and the National Science Foundation. In 2019, an NEBP team stationed in Chile collected promising data, but hourly balloon releases didn’t provide quite enough detail. Attempts to repeat the experiment in 2020 were foiled by COVID-19 travel restrictions in Argentina and a heavy rainstorm that impeded data collection in Chile.
      Project leaders factored in these lessons learned when planning for 2023, scheduling balloon releases every 15 minutes and carefully weighing locations with the best potential for success.
      “New Mexico looked especially promising,” said Jie Gong, a researcher in the NASA Climate and Radiation Lab at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, and co-investigator of the research on atmospheric gravity waves. “The majority of atmospheric gravity sources are convection, weather systems, and mountains. We wanted to eliminate all those possible sources.”
      The project created a New Mexico “supersite” in the town of Moriarty where four atmospheric science teams were clustered: two from Plymouth State University in Plymouth, New Hampshire, and one each from the State University of New York (SUNY) Albany and SUNY Oswego.
      Students began launching balloons at 10 a.m. the day before the eclipse.
      “They worked in shifts through the day and night, and then everyone was on site for the eclipse,” said Eric Kelsey, research associate professor at Plymouth State and the NEBP northeast regional lead.
      “Our hard work really paid off. The students had a real sense of accomplishment.”
      Eric Kelsey
      Research Associate Professor at Plymouth State and the NEBP Northeast Regional Lead.
      Each balloon released by the science teams carried a radiosonde, an instrument package that measured temperature, location, humidity, wind direction, and wind speed during every second of its climb through the atmosphere. Radiosondes transmitted this stream of raw data to the team on the ground. Students uploaded the data to a shared server, where Gong and two graduate students spent months processing and analyzing it.
      Confirmation that the eclipse had generated atmospheric gravity waves in the skies above New Mexico came in spring 2024.
      “We put all the data together according to time, and when we plotted that time series, I could already see the stripes in the signal,” Gong said. “I bombarded everybody’s email. We were quite excited.”
      Plymouth State University students Sarah Brigandi, left, and Sammantha Boulay release a weather balloon from Moriarty, New Mexico, to collect atmospheric data on Oct. 14, 2023.NASA For Students, Learning Curves Bring Opportunity
      The program offered many students their first experience in collecting data. But the benefits go beyond technical and scientific skill.
      “The students learned a ton through practicing launching weather balloons,” Kelsey said. “It was a huge learning curve. They had to work together to figure out all the logistics and troubleshoot. It’s good practice of teamwork skills.”
      “All of this is technically complicated,” Des Jardins said. “While the focus now is on the science result, the most important part is that it was students who made this happen.”
      NASA’s Science Mission Directorate Science Activation program funds NEBP, along with contributions from the National Space Grant College and Fellowship Project and support from NASA’s Balloon Program Office.
      Learn More:
      Montana State-led ballooning project confirms hypothesis about eclipse effects on atmosphere
      Nationwide Eclipse Ballooning Project
      NASA Selects Student Teams for High-Flying Balloon Science
      NASA Science Activation
      NASA Space Grant
      Explore More
      2 min read Leveraging Teacher Leaders to Share the Joy of NASA Heliophysics
      Many teachers are exceptionally skilled at bridging students’ interests with real-world science. Now for the…
      Article 22 hours ago 9 min read Proyecto de la NASA en Puerto Rico capacita a estudiantes en biología marina
      Article 2 days ago 2 min read NASA Earth Science Education Collaborative Member Co-Authors Award-Winning Paper in Insects
      On August 13, 2024, the publishers of the journal Insects notified authors of three papers…
      Article 2 days ago View the full article
    • By NASA
      Interstellar Lab, a small business comprised of team members from France, Texas, and Florida, took home the $750,000 grand prize for their food system, NUCLEUS, which uses a multi-pronged approach to growing and harvesting food outputs for astronauts on long-duration human space exploration missions.Credit: OSU/CFAES/Kenneth Chamberlain NASA has awarded a total of $1.25 million to three U.S. teams in the third and final round of the agency’s Deep Space Food Challenge. The teams delivered novel food production technologies that could provide long-duration human space exploration missions with safe, nutritious, and tasty food.
      The competitors’ technologies address NASA’s need for sustainable food systems for long-duration habitation in space, including future Artemis missions and eventual journeys to Mars. Advanced food systems also could benefit life on Earth and inspire food production in parts of the world that are prone to natural disasters, food insecurity, and extreme environments.
      “The Deep Space Food Challenge could serve as the framework for providing astronauts with healthy and delicious food using sustainable mechanisms,” said Angela Herblet, challenge manager for the Deep Space Food Challenge at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “The challenge has brought together innovative and driven individuals from around the world who are passionate about creating new solutions that support our agency’s future Moon to Mars missions.”
      Since the challenge’s launch in 2021, more than 300 teams from 32 countries have participated by submitting innovative food system designs. The competition, conceived and managed by NASA Centennial Challenges at NASA Marshall, is a first-of-its-kind coordinated effort between NASA and CSA (Canadian Space Agency), which ran its own challenge in parallel.
      Four American teams competed in Phase 3, which began in September 2023. The Methuselah Foundation partnered with Ohio State University to facilitate the final phase of the challenge, which included a two-month testing and demonstration period held on the university’s campus in Columbus, Ohio. Each U.S. team in Phase 3 was awarded $50,000 and took their technology to Columbus for testing.
      Throughout this phase, the teams constructed full-scale food production systems that were required to pass developmental milestones like safety, sensory testing, palatability, and harvesting volumes. Each team worked with four “Simunauts,” a crew of Ohio State students who managed the testing and demonstrations for Phase 3 over the eight-week period. The data gathered from testing was delivered to a judging panel to determine the winner.
      The challenge concluded at the Deep Space Food Symposium, a two-day networking and learning summit at the Nationwide and Ohio Farm Bureau 4-H Center on Aug. 15 and 16. Throughout the event, attendees met the Phase 3 finalists, witnessed demonstrations of the food production technologies, and attended panels featuring experts from NASA, government, industry, and academia. The winners of the challenge were announced at an awards ceremony at the end of the symposium.
      The U.S. winner and recipient of the $750,000 grand prize is Interstellar Lab of Merritt Island, Florida. Led by Barbara Belvisi, the small business combines several autonomous phytotrons and environment-controlled greenhouses to support a growth system involving a self-sustaining food production mechanism that generates fresh vegetables, microgreens, and insects necessary for micronutrients.
      Two runners-up each earned $250,000 for their food systems’ successes: Nolux of Riverside, California, and SATED of Boulder, Colorado.
      Nolux, a university team led by Robert Jinkerson, constructed an artificial photosynthetic system that can create plant and fungal-based foods without the operation of biological photosynthesis.
      Standing for Safe Appliance, Tidy, Efficient & Delicious, SATED is a one-man team of Jim Sears, who developed a variety of customizable food, from pizza to peach cobbler. The product is fire-safe and was developed by long-shelf-life and in-situ grown ingredients.
      NASA also selected and recognized one international team as a Phase 3 winner: Solar Foods of Lappeenranta, Finland, developed a food production system through gas fermentation that relies on single-cell protein production.
      In April 2024, CSA and Impact Canada awarded the grand prize winner of its parallel challenge to Ecoation, a Vancouver-based small business specializing in greenhouses. 
      “Congratulations to the winners and all the finalist teams for their many years dedicated to innovating solutions for the Deep Space Food Challenge,” said Amy Kaminski, program executive for NASA’s Prizes, Challenges, and Crowdsourcing at NASA Headquarters in Washington. “These food production technologies could change the future of food accessibility on other worlds and our home planet.”
      Also present at the symposium was celebrity chef and cookbook author Tyler Florence. After spending time with each finalist team and getting acquainted with their food systems, Florence selected one team to receive the “Tyler Florence Award for Culinary Innovation.” Team SATED of Boulder, Colorado, received the honor for their system that impressed Florence due to its innovative approach to the challenge.
      The Deep Space Food Challenge, a NASA Centennial Challenge, is a coordinated effort between NASA and CSA. Subject matter experts at Johnson Space Center in Houston and Kennedy Space Center in Florida, supported the competition. NASA’s Centennial Challenges are part of the Prizes, Challenges, and Crowdsourcing program within NASA’s Space Technology Mission Directorate and managed at Marshall Space Flight Center in Huntsville, Alabama. The Methuselah Foundation, in partnership with NASA, oversees the United States and international competitors.
      To learn more about the Deep Space Food Challenge, visit: 
      nasa.gov/spacefoodchallenge
      -end-
      Jasmine Hopkins
      Headquarters, Washington
      321-432-4624
      jasmine.s.hopkins@nasa.gov
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Ala.
      256-932-1940
      lane.e.figueroa@nasa.gov
      Share
      Details
      Last Updated Aug 19, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Prizes, Challenges, and Crowdsourcing Program Centennial Challenges Space Technology Mission Directorate View the full article
  • Check out these Videos

×
×
  • Create New...