Jump to content

Recommended Posts

  • Publishers
Posted
4 Min Read

The Macroeconomics of Space Symposium 

NASA technicians lift the James Webb Telescope
NASA technicians lift the James Webb Telescope

Join OTPS and NASA’s Agency Chief Economist at the Macroeconomics of Space Symposium on September 5, 2024

NASA’s Office of Technology, Policy, and Strategy invites you to join us at the “Macroeconomics of Space Symposium” happening on Thursday, September 5, 2024, from 8:30 a.m. to 12:30 p.m. EDT in the James Webb Auditorium at NASA Headquarters and virtually via WebEx.

OTPS is bringing together civil servants and leading researchers on the economic impacts of public R&D spending, to discuss the macroeconomics of space investments. This symposium will will feature academic presentations, a panel discussion, highlights from the upcoming FY23 NASA Economic Impact Report, and a keynote speech from Heather Boushey of the President’s Council of Economic Advisers—the first ever CEA appearance at NASA! 

We’ll explore multiple perspectives, from annual economic impacts to decades-long effects on aggregate productivity, to offer a new level of integrated insight into the macroeconomic impacts of NASA investments. For more information, a preview at our agenda, and to RSVP, see details below. We hope to see you there!

Register to attend in-person or virtually through WebEx: https://nasaevents.webex.com/weblink/register/r87edd3ab76a8929e05115dc74063e295 

Background

The macroeconomic implications of space-related government spending have long been a topic of interest within NASA and the Federal government more broadly. While NASA programs often focus on scientific and exploration goals, questions of NASA’s economic impacts and benefits to American society at large are frequent topics of interest from members of Congress and the general public. Toward this end, NASA publishes a biannual Economic Impact Report to assess economic benefits of NASA spending across the country. While this is of substantial interest to the US space community – as evidenced by media attention the previous report received – there remain open questions about long-run impacts through channels like NASA-developed technologies proliferating through the economy, NASA-funded methods of production enhancing output over time, and NASA-incentivized activities spurring further private investments in productive activity.

A recent wave of economic research provides new evidence on these long-run impacts. Their magnitude creates macroeconomic implications for national space policy. By some estimates, non-defense R&D spending – the bulk of which has historically been NASA spending – accounts for about one quarter of business productivity growth in the postwar period, with long-run social returns – the cumulative benefit to American society per dollar spent – of about 200%. For comparison, the social rate of return on overall US R&D investment is about 67%. As Treasury Secretary Janet Yellen recently noted: “… there is ample evidence [government research and development] is undersupplied, including due to a significant decline in federal R&D spending.” Paired with the evidence from the Economic Impact Report regarding annual employment effects generated by NASA spending around the country, these results suggest NASA offers a unique mechanism to promote American economic resilience, opportunity, and growth.

This symposium convenes leading researchers on the economic impacts of public R&D spending and civil servants to discuss the macroeconomics of space investments. It bridges multiple perspectives, from annual employment impacts to decades-long effects on aggregate productivity, to offer an unprecedented level of comprehensive insight into the macroeconomic impacts of NASA investments.

Event highlights (All times listed are in EDT and subject to change)

  • 8:30 -9 a.m.        In-person arrival and check-in
  • 9-9:15 a.m.         Introduction to workshop 
  • 9:15-9:30 a.m.   Keynote speaker Heather Boushey, Council of Economic Advisers 
  • 9:30-10:45 a.m. Presentations:
    • Andrew Fieldhouse/Karel Mertens, The Returns to Government R&D: Evidence from U.S. Appropriations Shocks
      Measuring the causal impact of government R&D on business-sector productivity, using postwar changes in federal R&D appropriations to estimate long-term economic returns to non-defense R&D.
    • Arnaud Dyèvre, Public R&D Spillovers and Productivity Growth
      Quantifying the impact of declining public R&D funding on U.S. productivity growth using 70 years of firm-level patent and balance-sheet data to compare public and private R&D spillovers.
    • Shawn Kantor/Alexander Whalley, Moonshot: Public R&D and Growth
      Examining the Space Race to assess the impacts of windfall R&D spending on manufacturing and regional economies using declassified National Intelligence Estimates of technologies needed for space missions, detailed Census data, and data on patent funding.
  • 10:45-11 a.m. Coffee break 
  • 11-11:20 a.m. NASA Economic Impact Report with Alex MacDonald
  • 11:20-11:50 p.m. Closing panel, “Space in the Federal R&D portfolio” with Alex MacDonald, Arnaud Dyèvre, Andrew Fieldhouse, and Shawn Kantor. Akhil Rao as moderator.

    Share

    Details

    Last Updated
    Aug 16, 2024
    Editor
    Bill Keeter

    View the full article

    Join the conversation

    You can post now and register later. If you have an account, sign in now to post with your account.
    Note: Your post will require moderator approval before it will be visible.

    Guest
    Reply to this topic...

    ×   Pasted as rich text.   Paste as plain text instead

      Only 75 emoji are allowed.

    ×   Your link has been automatically embedded.   Display as a link instead

    ×   Your previous content has been restored.   Clear editor

    ×   You cannot paste images directly. Upload or insert images from URL.

    • Similar Topics

      • By Space Force
        Avalon is the Southern Hemisphere’s largest airshow and aerospace and defense exposition. During the 2025 event, multiple industry exhibits, keynote speakers and engagements focused on current priorities and future development of space concerns.
        View the full article
      • By NASA
        NASA astronaut Christopher Williams poses for a portrait at NASA’s Johnson Space Center in Houston, Texas.Credit: NASA NASA astronaut Chris Williams will embark on his first mission to the International Space Station, serving as a flight engineer and Expedition 74 crew member.
        Williams will launch aboard the Roscosmos Soyuz MS-28 spacecraft in November, accompanied by Roscosmos cosmonauts Sergey Kud-Sverchkov and Sergei Mikaev. After launching from the Baikonur Cosmodrome in Kazakhstan, the trio will spend approximately eight months aboard the orbiting laboratory.
        During his expedition, Williams will conduct scientific investigations and technology demonstrations that help prepare humans for future space missions and benefit humanity.
        Selected as a NASA astronaut in 2021, Williams graduated with the 23rd astronaut class in 2024. He began training for his first space station flight assignment immediately after completing initial astronaut candidate training.
        Williams was born in New York City, and considers Potomac, Maryland, his hometown. He holds a bachelor’s degree in Physics from Stanford University in California and a doctorate in Physics from the Massachusetts Institute of Technology in Cambridge, where his research focused on astrophysics. Williams completed Medical Physics Residency training at Harvard Medical School in Boston. He was working as a clinical physicist and researcher at the Brigham and Women’s Hospital in Boston when he was selected as an astronaut.
        For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and making research breakthroughs not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA is able to more fully focus its resources on deep space missions to the Moon and Mars.
        Learn more about International Space Station research and operations at:
        https://www.nasa.gov/station
        -end-
        Josh Finch / Claire O’Shea
        Headquarters, Washington
        202-358-1100
        joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov
        Chelsey Ballarte
        Johnson Space Center, Houston
        281-483-5111
        chelsey.n.ballarte@nasa.gov
        Share
        Details
        Last Updated Apr 03, 2025 LocationNASA Headquarters Related Terms
        Humans in Space International Space Station (ISS) ISS Research Johnson Space Center View the full article
      • By Space Force
        Natalia Serna, daughter of Space Launch Delta 30’s senior enlisted leader Chief Master Sgt. Jay Harris and Maria Tapia, wins U.S. Space Force's Military Child of the Year.

        View the full article
      • By NASA
        2 min read
        Preparations for Next Moonwalk Simulations Underway (and Underwater)
        What are the dangers of going to space?

        For human spaceflight, the first thing I think about is the astronauts actually strapping themselves to a rocket. And if that isn’t dangerous enough, once they launch and they’re out into space in deep exploration, we have to worry about radiation.

        Radiation is coming at them from all directions. From the Sun, we have solar particles. We have galactic cosmic rays that are all over in the universe. And those cause damage to DNA. On Earth here, we use sunscreen to protect us from DNA damage. Our astronauts are protected from the shielding that’s around them in the space vehicles.

        We also have to worry about microgravity. So what happens there? We see a lot of bone and muscle loss in our astronauts. And so to prevent this, we actually have the astronauts exercising for hours every day. And of course we don’t want to run out of food on a space exploration mission. So we want to make sure that we have everything that the astronauts need to take with them to make sure that we can sustain them.

        There are many risks associated with human space exploration. NASA has been planning for these missions to make our astronauts return home safely.

        [END VIDEO TRANSCRIPT]

        Full Episode List

        Full YouTube Playlist
        Share
        Details
        Last Updated Apr 02, 2025 Related Terms
        General Biological & Physical Sciences Human Research Program International Space Station (ISS) Science Mission Directorate Explore More
        3 min read NASA Continues Support for Private Astronaut Missions to Space Station
        Article 3 hours ago 2 min read Citizen Scientists Use NASA Open Science Data to Research Life in Space
        How can life thrive in deep space? The Open Science Data Repository Analysis Working Groups invite…
        Article 11 hours ago 2 min read NASA Receives 10 Nominations for the 29th Annual Webby Awards
        Article 1 day ago Keep Exploring Discover Related Topics
        Missions
        Humans in Space
        Climate Change
        Solar System
        View the full article
      • By NASA
        What Are the Dangers of Going to Space? We Asked a NASA Expert
    • Check out these Videos

    ×
    ×
    • Create New...