Jump to content

NASA-Funded Research Institute Selects New Class of Space Health Fellows


NASA

Recommended Posts

  • Publishers
Earth observation taken by the Expedition 35 crew aboard the ISS. The Sun and portions of the forward (FWD) ISS are in view.
Earth as viewed from the International Space Station.
Credit: NASA

The NASA-funded Translational Research Institute for Space Health (TRISH) announced its selections for the institute’s 2024 postdoctoral fellowship, a space health program intended to launch the careers of a new generation of researchers tackling various challenges involved with human space exploration.

The program supports early-career scientists pursuing research with the potential to reduce the health risks associated with spaceflight. Selected fellows will participate in TRISH’s Academy of Bioastronautics, a mentorship community for space health professionals, and receive a two-year salary stipend. Fellows were selected based on the strengths of the various projects they proposed. Projects are expected to begin in September.

“Our TRISH program has always prioritized providing the next generation with the tools to further human health in space,” said Dr. Rihana Bokhari, acting TRISH chief scientific officer and assistant professor at Baylor College of Medicine in Houston. “As space becomes more accessible to more people, investing in these early-career scientists is necessary to develop solutions to mitigate the health risks that life in space may pose. We are eager to have this group join our postdoctoral fellowship program and enhance their research for spaceflight.”

The following fellows were selected:

Carolyn Chlebek, Ph.D.

MaineHealth

Mentor: Clifford Rosen, M.D.

Project: Bone Metabolism is Altered by Skeletal Unloading and Nutrient Limitation During Long-duration Spaceflight

Katharyn Flickinger, Ph.D.

University of Pittsburgh

Mentor: Clifton Callaway, M.D., Ph.D.

Project: Metabolic Measurement, Manipulation, and Countermeasure Strategies

Patrick Opdensteinen, M.Sc., Ph.D.

University of California, San Diego

Mentor: Nicole Steinmetz, Ph.D. Project: Streamlined Molecular Farming of Virus-Like Particle (VLP) Therapeutics in Space

The institute is supported by NASA’s Human Research Program to solve the challenges of human deep space exploration. Led by Baylor College of Medicine’s Center for Space Medicine, the consortium leverages partnerships with Caltech in Pasadena, California and Massachusetts Institute of Technology in Cambridge.

NASA’s Human Research Program pursues the best methods and technologies to support safe, productive human space travel. Through science conducted in laboratories, ground-based analogs, and missions to the International Space Station, the program scrutinizes how spaceflight affects human bodies and behaviors. Such research continues to drive NASA’s mission to innovate ways that keep astronauts healthy as space exploration expands to the Moon, Mars, and beyond.

-end-

Kelly Humphries / Laura Sorto

Johnson Space Center, Houston

281-483-5111
kelly.o.humphries@nasa.gov / laura.g.sorto@nasa.gov

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Credit: NASA NASA has selected eight companies for a new award to help acquire Earth observation data and provide related services for the agency.
      The Commercial SmallSat Data Acquisition Program On-Ramp1 Multiple Award contract is a firm-fixed-price indefinite-delivery/indefinite-quantity multiple-award contract with a maximum value of $476 million, cumulatively amongst all the selected contractors, and a performance period through Nov. 15, 2028.
      The selectees are:
      BlackSky Geospatial Solutions, Inc. in Herndon, Virginia ICEYE US Inc. in Irvine, California MDA Geospatial Service Inc. in Richmond, British Columbia, Canada Pixxel Space Technologies, Inc in El Segundo, California Planet Labs Federal, Inc. in Arlington, Virginia Satellogic Federal, LLC in Davidson, North Carolina Teledyne Brown Engineering, Inc. in Huntsville, Alabama The Tomorrow Companies Inc. in Boston Under the contract, the recipients will be responsible for acquiring observation data from commercial sources that support NASA’s Earth science research and application activities that help improve life on the planet. The goal of the awards is to give NASA a cost-effective way to augment or complement the Earth observations acquired by the agency and other U.S. government and international agencies for the benefit of all.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Share
      Details
      Last Updated Sep 06, 2024 LocationNASA Headquarters Related Terms
      SmallSats Program Earth Earth Observatory NASA Headquarters Planetary Science Division Science Mission Directorate View the full article
    • By European Space Agency
      Image: ESA’s Metal 3D Printer has produced the first metal part ever created in space. 
      The technology demonstrator, built by Airbus and its partners, was launched to the International Space Station at the start of this year, where ESA astronaut Andreas Mogensen installed the payload in the European Drawer Rack of ESA’s Columbus module. In August, the printer successfully printed the first 3D metal shape in space.  
      This product, along with three others planned during the rest of the experiment, will return to Earth for quality analysis: two of the samples will go to ESA’s technical heart in the Netherlands (ESTEC), another will go to ESA’s astronaut training centre in Cologne (EAC) for use in the LUNA facility, and the fourth will go to the Technical University of Denmark (DTU). 
      As exploration of the Moon and Mars will increase mission duration and distance from Earth, resupplying spacecraft will be more challenging.  Additive manufacturing in space will give autonomy for the mission and its crew, providing a solution to manufacture needed parts, to repair equipment or construct dedicated tools, on demand during the mission, rather than relying on resupplies and redundancies. 
      ESA’s technology demonstrator is the first to successfully print a metal component in microgravity conditions. In the past, the International Space Station has hosted plastic 3D printers.
      View the full article
    • By NASA
      Credit: NASA NASA has awarded the Center, Operations Maintenance, and Engineering II contract to Jacobs Technology Inc. of Tullahoma, Tennessee, to support operations at the agency’s Langley Research Center in Hampton, Virginia.
      The contract is a cost-plus-fixed-fee indefinite-delivery/indefinite-quantity contract with a maximum potential value of $973.7 million. Following a phase-in period that starts Tuesday, Oct. 1 and runs to Dec. 31, the contract will have a base period of 15 months followed by five optional periods that could extend the contract to the end of 2035.
      Under this contract, Jacobs Technology will assist in crucial research operations, engineering, and maintenance services at NASA Langley to help the center continue its work to solve the mysteries of our home planet, solar system, and beyond. The firm also will provide institutional and research operations support, maintenance and engineering for the center’s facilities, and central utilities operations, among other services.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Share
      Details
      Last Updated Sep 05, 2024 LocationNASA Headquarters Related Terms
      Langley Research Center NASA Centers & Facilities View the full article
    • By NASA
      On the left, the Canopee transport carrier containing the European Service Module for NASA’s Artemis III mission arrives at Port Canaveral in Florida, on Tuesday, Sept. 3, 2024, before completing the last leg of its journey to the agency’s Kennedy Space Center’s Neil A. Armstrong Operations and Checkout via truck. On the right, NASA’s Pegasus barge, carrying several pieces of hardware for Artemis II, III, and IV arrives at NASA Kennedy’s Launch Complex 39 turn basin wharf on Thursday, Sept. 5, 2024. Credit: NASA From across the Atlantic Ocean and through the Gulf of Mexico, two ships converged, delivering key spacecraft and rocket components of NASA’s Artemis campaign to the agency’s Kennedy Space Center in Florida.
      On Sept. 3, ESA (European Space Agency) marked a milestone in the Artemis III mission as its European-built service module for NASA’s Orion spacecraft completed a transatlantic journey from Bremen, Germany, to Port Canaveral, Florida, where technicians moved it to nearby NASA Kennedy. Transported aboard the Canopée cargo ship, the European Service Module—assembled by Airbus with components from 10 European countries and the U.S.—provides propulsion, thermal control, electrical power, and water and oxygen for its crews.
      “Seeing multi-mission hardware arrive at the same time demonstrates the progress we are making on our Artemis missions,” said Amit Kshatriya, deputy associate administrator, Moon to Mars Program, at NASA Headquarters in Washington. “We are going to the Moon together with our industry and international partners and we are manufacturing, assembling, building, and integrating elements for Artemis flights.”
      NASA’s Pegasus barge, the agency’s waterway workhorse for transporting large hardware by sea, ferried multi-mission hardware for the agency’s SLS (Space Launch System) rocket, the Artemis II launch vehicle stage adapter, the “boat-tail” of the core stage for Artemis III, the core stage engine section for Artemis IV, along with ground support equipment needed to move and assemble the large components. The barge pulled into NASA Kennedy’s Launch Complex 39B Turn Basin Thursday.
      The spacecraft factory inside NASA Kennedy’s Neil Armstrong Operations and Checkout Building is set to buzz with additional activity in the coming months. With the Artemis II Orion crew and service modules stacked together and undergoing testing, and engineers outfitting the Artemis III and IV crew modules, engineers soon will connect the newly arrived European Service Module to the crew module adapter, which houses electronic equipment for communications, power, and control, and includes an umbilical connector that bridges the electrical, data, and fluid systems between the crew and service modules.
      The SLS rocket’s cone-shaped launch vehicle stage adapter connects the core stage to the upper stage and protects the rocket’s flight computers, avionics, and electrical devices in the upper stage system during launch and ascent. The adapter will be taken to Kennedy’s Vehicle Assembly Building in preparation for Artemis II rocket stacking operations.
      The boat-tail, which will be used during the assembly of the SLS core stage for Artemis III, is a fairing-like structure that protects the bottom end of the core stage and RS-25 engines. This hardware, picked up at NASA’s Michoud Assembly Facility in New Orleans, will join the Artemis III core stage engine section housed in the spaceport’s Space Systems Processing Facility.
      The Artemis IV SLS core stage engine section arrived from NASA Michoud and also will transfer to the center’s processing facility ahead of final assembly.
      Under the Artemis campaign, NASA will land the first woman, first person of color, and its first international partner astronaut on the lunar surface, establishing long-term exploration for scientific discovery and preparing for human missions to Mars. The agency’s SLS rocket and Orion spacecraft, and supporting ground systems, along with the human landing system, next-generation spacesuits and rovers, and Gateway, serve as NASA’s foundation for deep space exploration.
      For more information on NASA’s Artemis missions, visit:
      https://www.nasa.gov/artemis
      -end-
      Rachel Kraft
      Headquarters, Washington
      202-358-1600
      Rachel.h.kraft@nasa.gov
      Allison Tankersley, Antonia Jaramillo Botero
      Kennedy Space Center, Florida
      321-867-2468
      Allison.p.tankersley@nasa.gov/ antonia.jaramillobotero@nasa.gov
      View the full article
    • By European Space Agency
      The two new Galileo satellites launched in April have entered service, completing the second of three constellation planes. With every addition to the constellation, the precision, availability and robustness of the Galileo signal is improved. The next launch is planned in the coming weeks and the remaining six Galileo First Generation satellites will join the constellation in the next years.
      View the full article
  • Check out these Videos

×
×
  • Create New...