Jump to content

Recommended Posts

  • Publishers
Posted
4 Min Read

The Summer Triangle’s Hidden Treasures

The Dumbbell Nebula pumps out infrared light in this image from NASA's Spitzer Space Telescope with green in the center, orange in the middle and red on the outer layer.
The ‘Dumbbell nebula,’ also known as Messier 27, pumps out infrared light in this image from NASA’s Spitzer Space Telescope. Planetary nebulae are now known to be the remains of stars that once looked a lot like our sun.
Credits:
NASA/JPL-Caltech/Harvard-Smithsonian CfA

August skies bring the lovely Summer Triangle asterism into prime position after nightfall for observers in the Northern Hemisphere. Its position high in the sky may make it difficult for some to observe its member stars comfortably, since looking straight up while standing can be hard on one’s neck! While that isn’t much of a problem for those that just want to quickly spot its brightest stars and member constellations, this difficulty can prevent folks from seeing some of the lesser known and dimmer star patterns scattered around its informal borders. The solution? Lie down on the ground with a comfortable blanket or mat or grab a lawn or gravity chair and sit luxuriously while facing up. You’ll quickly spot the major constellations about the Summer Triangle’s three corner stars: Lyra with bright star Vega, Cygnus with brilliant star Deneb, and Aquila with its blazing star, Altair. As you get comfortable and your eyes adjust, you’ll soon find yourself able to spot a few constellations hidden in plain sight in the region around the Summer Triangle: Vulpecula the Fox, Sagitta the Arrow, and Delphinus the Dolphin! You could call these the Summer Triangle’s “hidden treasures” – and they are hidden in plain sight for those that know where to look!

Image of the constellations Cygnus, Lyra, Aquila, Vulpecula, Sagitta, and Delphinus in the night sky.
Mid-August offers views of the Summer Triangle with stars Deneb, Vega and Altair in the constellations Cygnus, Lyra, Aquila respectively. Constellations Vulpecula, Sagitta, and Delphinus are also visible, along with some of jewels – namely Messier 27, Messier 71, Caldwell 42 and Caldwell 47.
Stellarium Web

Vulpecula the Fox is located near the middle of the Summer Triangle, and is relatively small, like its namesake. Despite its size, it features the largest planetary nebula in our skies: M27, aka the Dumbbell Nebula! It’s visible in binoculars as a fuzzy “star” and when seen through telescopes, its distinctive shape can be observed more readily – especially with larger telescopes. Planetary nebulae, named such because their round fuzzy appearances were initially thought to resemble the disc of a planet by early telescopic observers, form when stars similar to our Sun begin to die. The star will expand into a massive red giant, and its gases drift off into space, forming a nebula. Eventually the star collapses into a white dwarf – as seen with M27 – and eventually the colorful shell of gases will dissipate throughout the galaxy, leaving behind a solitary, tiny, dense, white dwarf star. You are getting a peek into our Sun’s far-distant future when you observe this object!

Several stars shine against black space.
This spectacular NASA/ESA Hubble Space Telescope image shows a bright scattering of stars in the small constellation of Sagitta (the Arrow). This is the centre of the globular cluster Messier 71, a great ball of ancient stars on the edge of our galaxy around 13 000 light-years from Earth. M71 is around 27 light-years across. Globular clusters are like galactic suburbs, pockets of stars that exist on the edge of major galaxies. These clusters are tightly bound together by their gravitational attraction, hence their spherical shape and their name: globulus means “little sphere” in Latin. Around 150 such globular clusters are known to exist around our Milky Way, each one of them containing several hundred thousand stars. Messier 71 has been known for a long time, having been first spotted in the mid eighteenth century by Swiss astronomer Jean-Philippe de Cheseaux. Cheseaux discovered a number of nebulae in his career, and also spent much time studying religion: one posthumously published work attempted to derive the exact date of Christ’s crucifixion from astronomical events noted in the Bible. Despite being a familiar object, Messier 71’s precise nature was disputed until recently. Was it simply an open cluster, a loosely bound group of stars? This was for many years the dominant view. But in the 1970s, astronomers came to the view that it is in fact a relatively sparse globular cluster. The stars in Messier 71, as is usual in such clusters, are relatively old, at around 9 to 10 billion years, and consequently are low in elements other than hydrogen and helium. This picture was created from images taken with the Wide Field Channel of the Advanced Camera for Surveys on Hubble. It is a combination of images taken through yellow (F606W — coloured blue) and near-infrared (F814W — coloured red) filters. The exposure times were 304 s and 324 s respectively. The field of view is about 3.4 arcminutes across.
ESA/Hubble and NASA

Sagitta the Arrow is even smaller than Vulpecula – it’s the third smallest constellation in the sky! Located between the stars of Vulpecula and Aquila the Eagle, Sagitta’s stars resemble its namesake arrow. It too contains an interesting deep-sky object: M71, an unusually small and young globular cluster whose lack of a strong central core has long confused and intrigued astronomers. Your own views very likely won’t be as sharp or close as this. However, this photo does show the cluster’s lack of a bright, concentrated core, which led astronomers until fairly recently to classify this unusual cluster as an “open cluster” rather than as a “globular cluster.” Studies in the 1970s proved it to be a globular cluster after all  – though an unusually young and small one! It’s visible in binoculars, and a larger telescope will enable you to separate its stars a bit more easily than most globulars; you’ll certainly see why it was thought to be an open cluster!

Delicate Delphinus the Dolphin appears to dive in and out of the Milky Way near Aquilla and Sagitta! Many stargazers identify Delphinus as a herald of the fainter water constellations, rising in the east after sunset as fall approaches. The starry dolphin appears to leap out of the great celestial ocean, announcing the arrival of more wonderful sights later in the evening. With a large telescope and dark skies, you can pick out globular clusters Caldwell 42 and Caldwell 47.

Want to hunt for more treasures? You’ll need a treasure map, and the Night Sky Network’s “Trip Around the Triangle” handout is the perfect guide for your quest!

Originally posted by Dave Prosper: August 2022

Last Updated by Kat Troche: April 2024

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This artist’s concept shows the Moon’s hot interior and volcanism about 2 to 3 billion years ago. It is thought that volcanic activity on the lunar near side (the side facing Earth) helped create a landscape dominated by vast plains called mare, which are formed by molten rock that cooled and solidified. NASA/JPL-Caltech Analyzing gravity data collected by spacecraft orbiting other worlds reveals groundbreaking insights about planetary structures without having to land on the surface.
      Although the Moon and the asteroid Vesta are very different, two NASA studies use the same technique to reveal new details about the interiors of both.
      In the lunar study, published May 14 in the journal Nature, researchers developed a new gravity model of the Moon that includes tiny variations in the celestial body’s gravity during its elliptical orbit around Earth. These fluctuations cause the Moon to flex slightly due to Earth’s tidal force — a process called tidal deformation — which provides critical insights into the Moon’s deep internal structure.
      Using their model, the researchers produced the most detailed lunar gravitational map yet, providing future missions an improved way to calculate location and time on the Moon. They accomplished this by analyzing data on the motion of NASA’s GRAIL (Gravity Recovery and Interior Laboratory) mission, whose spacecraft, Ebb and Flow, orbited the Moon from Dec. 31, 2011, to Dec. 17, 2012.
      These views of the Moon’s near side, left, and far side were put together from observations made by NASA’s Lunar Reconnaissance Orbiter. NASA/JPL-Caltech In a second study, published in the journal Nature Astronomy on April 23, the researchers focused on Vesta, an object in the main asteroid belt between Mars and Jupiter. Using NASA’s Deep Space Network radiometric data and imaging data from the agency’s Dawn spacecraft, which orbited the asteroid from July 16, 2011, to Sept. 5, 2012, they found that instead of having distinct layers as expected, Vesta’s internal structure may be mostly uniform, with a very small iron core or no core at all.
      “Gravity is a unique and fundamental property of a planetary body that can be used to explore its deep interior,” said Park. “Our technique doesn’t need data from the surface; we just need to track the motion of the spacecraft very precisely to get a global view of what’s inside.”
      Lunar Asymmetry
      The lunar study looked at gravitational changes to the Moon’s near and far sides. While the near side is dominated by vast plains — known as mare — formed by molten rock that cooled and solidified billions of years ago, the far side is more rugged, with few plains.
      NASA’s Dawn mission obtained this image of the giant asteroid Vesta on July 24, 2011. The spacecraft spent 14 months orbiting the asteroid, capturing more than 30,000 images and fully mapping its surface. NASA/JPL-Caltech/UCLA/MPS/DLR/IDA Both studies were led by Ryan Park, supervisor of the Solar System Dynamics Group at NASA’s Jet Propulsion Laboratory in Southern California, and were years in the making due to their complexity. The team used NASA supercomputers to build a detailed map of how gravity varies across each body. From that, they could better understand what the Moon and Vesta are made of and how planetary bodies across the solar system formed.
      Some theories suggest intense volcanism on the near side likely caused these differences. That process would have caused radioactive, heat-generating elements to accumulate deep inside the near side’s mantle, and the new study offers the strongest evidence yet that this is likely the case.
      “We found that the Moon’s near side is flexing more than the far side, meaning there’s something fundamentally different about the internal structure of the Moon’s near side compared to its far side,” said Park. “When we first analyzed the data, we were so surprised by the result we didn’t believe it. So we ran the calculations many times to verify the findings. In all, this is a decade of work.”
      When comparing their results with other models, Park’s team found a small but greater-than-expected difference in how much the two hemispheres deform. The most likely explanation is that the near side has a warm mantle region, indicating the presence of heat-generating radioactive elements, which is evidence for volcanic activity that shaped the Moon’s near side 2 billion to 3 billion years ago.
      Vesta’s Evolution
      Park’s team applied a similar approach for their study that focused on Vesta’s rotational properties to learn more about its interior.  
      “Our technique is sensitive to any changes in the gravitational field of a body in space, whether that gravitational field changes over time, like the tidal flexing of the Moon, or through space, like a wobbling asteroid,” said Park. “Vesta wobbles as it spins, so we could measure its moment of inertia, a characteristic that is highly sensitive to the internal structure of the asteroid.”
      Changes in inertia can be seen when an ice skater spins with their arms held outward. As they pull their arms in, bringing more mass toward their center of gravity, their inertia decreases and their spin speeds up. By measuring Vesta’s inertia, scientists can gain a detailed understanding of the distribution of mass inside the asteroid: If its inertia is low, there would be a concentration of mass toward its center; if it’s high, the mass would be more evenly distributed.
      Some theories suggest that over a long period, Vesta gradually formed onion-like layers and a dense core. But the new inertia measurement from Park’s team suggests instead that Vesta is far more homogeneous, with its mass distributed evenly throughout and only a small core of dense material, or no core.
      Gravity slowly pulls the heaviest elements to a planet’s center over time, which is how Earth ended up with a dense core of liquid iron. While Vesta has long been considered a differentiated asteroid, a more homogenous structure would suggest that it may not have fully formed layers or may have formed from the debris of another planetary body after a massive impact.
      In 2016, Park used the same data types as the Vesta study to focus on Dawn’s second target, the dwarf planet Ceres, and results suggested a partially differentiated interior.
      Park and his team recently applied a similar technique to Jupiter’s volcanic moon Io, using data acquired by NASA’s Juno and Galileo spacecraft during their flybys of the Jovian satellite as well as from ground-based observations. By measuring how Io’s gravity changes as it orbits Jupiter, which exerts a powerful tidal force, they revealed that the fiery moon is unlikely to possess a global magma ocean.
      “Our technique isn’t restricted just to Io, Ceres, Vesta, or the Moon,” said Park. “There are many opportunities in the future to apply our technique for studying the interiors of intriguing planetary bodies throughout the solar system.”
      News Media Contacts
      Ian J. O’Neill
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-2649
      ian.j.oneill@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      Share
      Details
      Last Updated May 14, 2025 Related Terms
      Vesta Dawn Earth's Moon GRAIL (Gravity Recovery And Interior Laboratory) Jet Propulsion Laboratory Planetary Science Small Bodies of the Solar System The Solar System Explore More
      7 min read Webb’s Titan Forecast: Partly Cloudy With Occasional Methane Showers
      Saturn’s moon Titan is an intriguing world cloaked in a yellowish, smoggy haze. Similar to…
      Article 3 hours ago 5 min read NASA’s Europa Clipper Captures Mars in Infrared
      Article 2 days ago 5 min read NASA’s Webb Reveals New Details, Mysteries in Jupiter’s Aurora
      NASA’s James Webb Space Telescope has captured new details of the auroras on our solar…
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By USH
      Shape-Shifting Materials are advanced, adaptive materials capable of changing their physical form, embedding sensors and circuits directly into their structure, and even storing energy,  all without traditional wiring. Lockheed Martin is at the forefront of developing these futuristic materials, raising questions about the possible extraterrestrial origin of this technology. 

      In a previous article, we discussed why suppressed exotic technologies are suddenly being disclosed. One company that frequently comes up in this conversation is Lockheed Martin, the American defense and aerospace giant known for pushing the boundaries of aviation and space innovation. 
      Imagine an aircraft that can grow its own skin, embed sensors into its body, store energy without wires, and even shift its shape mid-flight to adapt to changing conditions. This isn’t science fiction anymore, Lockheed Martin’s cutting-edge research is turning these futuristic concepts into reality. 
      But where is all this coming from? 
      The rapid development and creativity behind Lockheed Martin’s projects raise intriguing questions. Whistleblowers like David Grusch have recently alleged that Lockheed Martin has had access to recovered UFO materials for decades. Supporting this, Don Phillips,  a former Lockheed engineer,  confirmed years ago that exotic materials have been held and studied by the company since at least the 1950s. 
      This suggests that for over half a century, Lockheed has secretly been engaged in researching and reverse-engineering off-world technologies. It's possible that the breakthroughs we’re seeing today are the result of this hidden legacy. Ben Rich, former head of Lockheed’s Skunk Works division, famously hinted at this when he said, "We now have the technology to take ET home." 
      One particularly stunning development involves "smart" materials that behave almost like muscles, allowing aircraft structures to morph in real-time. These materials enable a craft to fine-tune its aerodynamics on the fly, adjusting instantly to turbulence, speed shifts, or mission-specific demands. 
      Lockheed’s innovations go even further. By embedding carbon nanotubes, extremely strong and highly conductive microscopic structure, directly into the material, they have created surfaces that can transfer information and power without traditional wiring. In these next-generation aircraft, the "skin" itself acts as the nervous system, the energy grid, and the sensor network all at once. 
      You can only imagine the kinds of technologies that have been developed over the years through the reverse engineering of exotic materials and recovered extraterrestrial craft. Yet, governments and space agencies remain tight-lipped about the existence of advanced alien civilizations, who likely introduced these techniques to Earth unintentionally.
        View the full article
    • By NASA
      This summer, NASA’s Glenn Research Center in Cleveland is offering a free summer STEM program for high school students in their junior and senior years.Credit: NASA NASA’s Glenn Research Center in Cleveland is launching the NASA Glenn High School Engineering Institute this summer. The free, work-based learning experience is designed to help high school students prepare for a future in the aerospace workforce.
      Rising high school juniors and seniors in Northeast Ohio can submit applications for this new, in-person summer program from Friday, April 11, through Friday, May 9.
      The NASA Glenn High School Engineering Institute will immerse students in NASA’s work while providing essential career readiness tools to help them in future science, technology, engineering, and mathematics-focused academic and professional pursuits.
      Throughout the five-day institute, students will use authentic NASA mission content and work alongside Glenn’s technical experts to gain a deeper understanding of the engineering design process, develop practical engineering solutions to real-world challenges, and test prototypes to answer questions in key mission areas:
      Acoustic dampening – How can we reduce noise pollution from jet engines? Power management and distribution – How can we develop a smart power system for future space stations? Simulated lunar operations – Can we invent tires that don’t use air? Program Dates
      Selected students will participate in one of the following week-long sessions.
      Session 1: July 7 – 11, 2025 Session 2: July 14 – 18, 2025 Session 3: July 21 – 25, 2025 Eligibility and Application Requirements
      To be eligible for this program, students must:
      Be entering 11th or 12th grade for the 2025-2026 academic year Have a minimum 3.2 GPA, verified by their school counselor Submit a letter of recommendation from a teacher Additional application requirements are outlined in the Supplemental Application.
      How to Apply:
      To be considered for this opportunity, complete and submit the NASA Gateway application and the Supplemental Application by Friday May 9.
      Questions pertaining to the NASA Glenn High School Engineering Institute should be directed to Gerald Voltz at GRC-Ed-Opportunities@mail.nasa.gov.
      For information about NASA Glenn, visit:
      https://www.nasa.gov/glenn
      -end-
      Debbie Welch
      Glenn Research Center, Cleveland
      216-433-8655
      debbie.welch@nasa.gov
      Explore More
      3 min read NASA Science Supports Data Literacy for K-12 Students
      Data – and our ability to understand and use it – shapes nearly every aspect…
      Article 19 hours ago 3 min read University High Triumphs at JPL-Hosted Ocean Sciences Bowl
      Article 1 week ago 2 min read Students Explore Technical Careers at NASA
      Article 3 weeks ago View the full article
    • By European Space Agency
      For decades, satellites have played a crucial role in our understanding of the remote polar regions. The ongoing loss of Antarctic ice, owing to the climate crisis, is, sadly, no longer surprising. However, satellites do more than just track the accelerating flow of glaciers towards the ocean and measure ice thickness.
      New research highlights how ESA’s CryoSat mission has been used to uncover the hidden impact of subglacial lakes – vast reservoirs of water buried deep under the ice – that can suddenly drain into the ocean in dramatic outbursts and affect ice loss.
      View the full article
    • By NASA
      Main Menu Videos For Educators For Students TBD News About Help learners STEMify their summer through hands-on and engaging activities curated by the NASA eClips team. You’ll find something for everyone – Earth-based and out-of-this-world. This issue includes eClips videos, resources, and design challenges as well as partner activities and other recommended summer activities. We have organized them by the amount of time the activity will take so you can easily plan your day around them! Enjoy!
      Downloads
      Summer 2024 newsletter
      Mar 17, 2025
      PDF (4.91 MB)


      View the full article
  • Check out these Videos

×
×
  • Create New...