Jump to content

Recommended Posts

  • Publishers
Posted

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Science in Space: August 2024

Life on the International Space Station is quite different from life on the ground. Crew members experience multiple sunrises and sunsets each day, spend their time in a confined space, have packed schedules, and deal with microgravity.

These and other conditions during spaceflight can negatively affect the performance and well-being of crew members. Many studies on the space station work to characterize and understand those effects and others try out new technologies and practices to help counter them.

Light Up My Life

A current investigation from ESA (European Space Agency), Circadian Light tests a new lighting system to help astronauts maintain a more normal daily or circadian rhythm. An LED panel automatically and gradually changes the light spectrum and varies from day to day to better mimic natural conditions on Earth. The study seeks insight into this system’s effect on circadian rhythm regulation, sleep, stress, and overall well-being of crew members. The findings also could reveal ways to improve lighting for shift workers and those in extreme or remote environments.

A rectangular white light about the size of a computer monitor is attached to the quilt-like ceiling at the top of this image. A blue and white sleeping bag is visible on the right of the image and on the left, a blue brick-sized power box is connected to the light with a cord.
Circadian Light experiment installed inside a crew cabin
ESA

Daily Rhythms

An earlier ESA investigation, Circadian Rhythms, examined how daily rhythms change during long-duration spaceflight and its non-24-hour cycles of light and dark. This understanding could support countermeasures to improve performance and health on future missions.

A well-established way to determine circadian rhythms is by continuously recording core body temperature, but methods to do so can be invasive and inconvenient. For this investigation, researchers developed non-invasive skin sensor technology for measuring body core temperature over extended periods of time.

Hadfield is wearing an orange polo shirt and khaki pants and holding a silver canister with a white label and blue tip in his left hand. With his right hand, he is pointing to a round yellow sensor taped to his forehead. There is a laptop over his left shoulder and multiple cords, wires, and switches on the wall in front of him.
CSA astronaut Chris Hadfield is wearing a forehead sensor for the Circadian Rhythms experiment.
NASA

Astronaut, Phone Home

Missions to the Moon or Mars will experience delays in communications with Earth – as much as 30 minutes each way from Mars. The Comm Delay Assessment investigation looked at how such delays might affect crew members handling medical and other emergencies to help psychologists develop ways to manage the stress of completing these critical tasks without immediate advice from Earth. Results showed that the space station could provide a platform to test communications delay countermeasures. The research also confirmed that communication delays increased individual stress and frustration and reduced task efficiency and teamwork, and suggested that enhanced training, teamwork, and technology could mitigate or prevent these problems.

This is Your Brain in Space

NeuroMapping studied changes to brain structure and function, motor control, and multi-tasking abilities during spaceflight and measured how long it took crew members to recover after a mission. Results published from this work include a study that found no effect on spatial working memory from spaceflight but that did identify significant changes in brain connectivity. Another paper reported substantial increases in brain volume that increased with mission duration and with longer intervals between missions. The researchers suggest that intervals of less than 3 years between missions may not be sufficient for full recovery.

Rubins, wearing a black shirt and khaki pants, with her hair in a ponytail floating above her head and a harness around her upper body that tethers her to the surface beneath her, works a controller in front of a laptop. There are blue storage bags behind her and other equipment and cords on the wall in front of her.
NASA Astronaut Kate Rubins performs operations for the NeuroMapping investigation.
NASA

Dear Diary

For the Journals investigation, crew members wrote daily entries that researchers analyzed to identify issues related to well-being. The study provided the first quantitative data for ranking the behavioral issues associated with spending lengthy time in space. Most journal entries dealt with ten categories: work, outside communications, adjustment, group interaction, recreation/leisure, equipment, events, organization/management, sleep, and food. The report provided insight into how these factors affect human performance and included recommendations to help crews prepare for spaceflight and to improve living and working in space.

Don’t Throw Away This Shot

Crew members on the space station take photographs of their home planet for Crew Earth Observations (CEO). These images record how humans and natural events change Earth over time and support a wealth of research on the ground, including studies of urban growth, natural systems such as coral reefs and icebergs, land use, and ocean events. Over time, researchers realized that taking these photographs also improves the mental well-being of crew members. Many of them spend much of their free time shooting from the station’s cupola.

Almost like Being There

ESA’s VR Mental Care tests the use of virtual reality (VR) technology to provide mental relaxation and better general mental health for astronauts during their missions. Participating crew members use a headset to view 360-degree, high-quality video and sound scenarios and fill out questionnaires about the experience. In addition to helping astronauts, this tool could be used to deal with psychological issues such as stress, anxiety, and post-traumatic stress disorder on Earth.

Mogenson, in a blue t-shirt and black shorts, is wearing a black VR headset and adjusting it with his left hand and holding a controller in his right hand. There is a laptop screen on either side of him and multiple cords and cables on the station wall behind him.
ESA astronaut Andreas Mogenson wears a VR headset.
ESA

Melissa Gaskill

International Space Station Research Communications Team

NASA’s Johnson Space Center

Search this database of scientific experiments to learn more about those mentioned in this article.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The Soyuz MS-26 spacecraft is seen as it lands in a remote area near the town of Zhezkazgan, Kazakhstan with Expedition 72 NASA astronaut Don Pettit, and Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner aboard, April 19, 2025 (April 20, 2025, Kazakhstan time). The trio are returning to Earth after logging 220 days in space as members of Expeditions 71 and 72 aboard the International Space Station.NASA/Bill Ingalls NASA astronaut Don Pettit returned to Earth Saturday, accompanied by Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner, concluding a seven-month science mission aboard the International Space Station.
      The trio departed the space station at 5:57 p.m. EDT aboard the Soyuz MS-26 spacecraft before making a safe, parachute-assisted landing at 9:20 p.m. (6:20 a.m. on Sunday, April 20, Kazakhstan time), southeast of Dzhezkazgan, Kazakhstan. Pettit also celebrates his 70th birthday on Sunday, April 20.
      Spanning 220 days in space, Pettit and his crewmates orbited the Earth 3,520 times, completing a journey of 93.3 million miles. Pettit, Ovchinin, and Vagner launched and docked to the orbiting laboratory on Sept. 11, 2024.
      During his time aboard the space station, Pettit conducted research to enhance in-orbit metal 3D printing capabilities, advance water sanitization technologies, explore plant growth under varying water conditions, and investigate fire behavior in microgravity, all contributing to future space missions. He also used his surroundings aboard station to conduct unique experiments in his spare time and captivate the public with his photography.
      This was Pettit’s fourth spaceflight, where he served as a flight engineer for Expeditions 71 and 72. He has logged 590 days in orbit throughout his career. Ovchinin completed his fourth flight, totaling 595 days, and Vagner has earned an overall total of 416 days in space during two spaceflights.
      NASA is following its routine postlanding medical checks, the crew will return to the recovery staging area in Karaganda, Kazakhstan. Pettit will then board a NASA plane bound for the agency’s Johnson Space Center in Houston. According to NASA officials at the landing site, Pettit is doing well and in the range of what is expected for him following return to Earth.
      For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a strong low Earth orbit economy, NASA is focusing more resources on deep space missions to the Moon as part of Artemis in preparation for future astronaut missions to Mars.
      Learn more about International Space Station research and operations at:
      https://www.nasa.gov/station
      -end-
      Joshua Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Apr 19, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      International Space Station (ISS) Expedition 72 Humans in Space ISS Research View the full article
    • By NASA
      NASA researchers are sending three air quality monitors to the International Space Station to test them for potential future use on the Moon.Credit: NASA/Sara Lowthian-Hanna As NASA prepares to return to the Moon, studying astronaut health and safety is a top priority. Scientists monitor and analyze every part of the International Space Station crew’s daily life—down to the air they breathe. These studies are helping NASA prepare for long-term human exploration of the Moon and, eventually, Mars.

      As part of this effort, NASA’s Glenn Research Center in Cleveland is sending three air quality monitors to the space station to test them for potential future use on the Moon. The monitors are slated to launch on Monday, April 21, aboard the 32nd SpaceX commercial resupply services mission for NASA.

      Like our homes here on Earth, the space station gets dusty from skin flakes, clothing fibers, and personal care products like deodorant. Because the station operates in microgravity, particles do not have an opportunity to settle and instead remain floating in the air. Filters aboard the orbiting laboratory collect these particles to ensure the air remains safe and breathable.

      Astronauts will face another air quality risk when they work and live on the Moon—lunar dust.
      “From Apollo, we know lunar dust can cause irritation when breathed into the lungs,” said Claire Fortenberry, principal investigator, Exploration Aerosol Monitors project, NASA Glenn. “Earth has weather to naturally smooth dust particles down, but there is no atmosphere on the Moon, so lunar dust particles are sharper and craggier than Earth dust. Lunar dust could potentially impact crew health and damage hardware.”

      Future space stations and lunar habitats will need monitors capable of measuring lunar dust to ensure air filtration systems are functioning properly. Fortenberry and her team selected commercially available monitors for flight and ground demonstration to evaluate their performance in a spacecraft environment, with the goal of providing a dust monitor for future exploration systems.
      NASA Glenn Research Center’s Claire Fortenberry holds a dust sample collected from International Space Station air filters.Credit: NASA/Sara Lowthian-Hanna Glenn is sending three commercial monitors to the space station to test onboard air quality for seven months. All three monitors are small: no bigger than a shoe box. Each one measures a specific property that provides a snapshot of the air quality aboard the station. Researchers will analyze the monitors based on weight, functionality, and ability to accurately measure and identify small concentrations of particles in the air.

      The research team will receive data from the space station every two weeks. While those monitors are orbiting Earth, Fortenberry will have three matching monitors at Glenn. Engineers will compare functionality and results from the monitors used in space to those on the ground to verify they are working as expected in microgravity. Additional ground testing will involve dust simulants and smoke.

      Air quality monitors like the ones NASA is testing also have Earth-based applications. The monitors are used to investigate smoke plumes from wildfires, haze from urban pollution, indoor pollution from activities like cooking and cleaning, and how virus-containing droplets spread within an enclosed space.

      Results from the investigation will help NASA evaluate which monitors could accompany astronauts to the Moon and eventually Mars. NASA will allow the manufacturers to review results and ensure the monitors work as efficiently and effectively as possible. Testing aboard the space station could help companies investigate pollution problems here on Earth and pave the way for future missions to the Red Planet.
      NASA Glenn Research Center’s Claire Fortenberry demonstrates how space aerosol monitors analyze the quality of the air.Credit: NASA/Sara Lowthian-Hanna “Going to the Moon gives us a chance to monitor for planetary dust and the lunar environment,” Fortenberry said. “We can then apply what we learn from lunar exploration to predict how humans can safely explore Mars.”
      NASA commercial resupply missions to the International Space Station deliver scientific investigations in the areas of biology and biotechnology, Earth and space science, physical sciences, and technology development and demonstrations. Cargo resupply from U.S. companies ensures a national capability to deliver scientific research to the space station, significantly increasing NASA’s ability to conduct new investigations aboard humanity’s laboratory in space.
      Learn more about NASA and SpaceX’s 32nd commercial resupply mission to the space station:
      https://www.nasa.gov/nasas-spacex-crs-32/
      Explore More
      3 min read NASA Studies Wind Effects and Aircraft Tracking with Joby Aircraft
      Article 17 hours ago 4 min read Science Meets Art: NASA Astronaut Don Pettit Turns the Camera on Science
      Article 1 day ago 1 min read Recognizing Employee Excellence 
      Article 1 day ago View the full article
    • By European Space Agency
      Image: This very high-resolution image captures the Egyptian city of Giza and its surrounding area, including the world-famous Giza Pyramid Complex. View the full article
    • By NASA
      The space shuttle Discovery launches from NASA’s Kennedy Space Center in Florida, heading through Atlantic skies toward its 51-D mission. The seven-member crew lifted off at 8:59 a.m. ET, April 12, 1985.NASA The launch of space shuttle Discovery is captured in this April 12, 1985, photo. This mission, STS-51D, was the 16th flight of NASA’s Space Shuttle program, and Discovery’s fourth flight.
      Discovery carried out 39 missions, more than any other space shuttle. Its missions included deploying and repairing the Hubble Space Telescope and 13 flights to the International Space Station – including the very first docking in 1999. The retired shuttle now resides at the National Air and Space Museum’s Steven F. Udvar-Hazy Center in Virginia.
      Learn more about NASA’s Space Shuttle Program.
      Image credit: NASA
      View the full article
    • By Space Force
      U.S. Space Force Chief of Space Operations Gen. Chance Saltzman spoke to hundreds of cadets and national leaders during the 2025 National Conclave for Arnold Air Society and Silver Wings, emphasizing the evolving role of the Space Force in the future fight.
      View the full article
  • Check out these Videos

×
×
  • Create New...