Members Can Post Anonymously On This Site
Lecture to UAH Research Experiences for Undergraduates (REU) Students
-
Similar Topics
-
By NASA
Expedition 72 Flight Engineers Takuya Onishi from JAXA (Japan Aerospace Exploration Agency) and NASA astronauts Anne McClain, Nichole Ayers, and Don Pettit pose while inside the vestibule between the International Space Station’s Unity module and the Cygnus space freighter.NASA NASA astronaut Nichole Ayers and JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi will answer prerecorded questions about science, technology, engineering, and mathematics from students in Mansfield, Texas, while aboard the International Space Station.
The 20-minute space-to-Earth call will take place at 10:40 a.m. EDT on Monday, May 5, and can be watched on the NASA STEM YouTube Channel.
Media interested in covering the event must RSVP no later than 5 p.m., Friday, May 2 by contacting Laura Jobe at laurajobe@misdmail.org or 817-299-6300.
The event, hosted by Mansfield Independent School District, also will have students present from Brenda Norwood Elementary, Alma Martinez Intermediate, Charlene McKinzey Middle, Jerry Knight and Frontier STEM Academies in Mansfield. This opportunity will allow the students to relate what they have learned about space travel to personal experiences.
For more than 24 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
Important research and technology investigations taking place aboard the space station benefit people on Earth and lays the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery.
See videos of astronauts aboard the space station at:
https://www.nasa.gov/stemonstation
-end-
Gerelle Dodson
Headquarters, Washington
202-358-1600
gerelle.q.dodson@nasa.gov
Sandra Jones
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov
Share
Details
Last Updated Apr 30, 2025 LocationNASA Headquarters Related Terms
Humans in Space International Space Station (ISS) Johnson Space Center NASA Headquarters View the full article
-
By NASA
Crew members are kicking off operations for several biological experiments that recently launched to the International Space Station aboard NASA’s 32nd SpaceX commercial resupply services mission. These include examining how microgravity affects production of protein by microalgae, testing a microscope to capture microbial activity, and studying genetic activity in biofilms.
Microalgae in microgravity
Sophie’s BioNutrients This ice cream is one of several products made with a protein powder created from Chorella microalgae by researchers for the SOPHONSTER investigation, which looks at whether the stress of microgravity affects the algae’s protein yield. Microalgae are nutrient dense and produce proteins with essential amino acids, beneficial fatty acids, B vitamins, iron, and fiber. These organisms also can be used to make fuel, cooking oil, medications, and materials. Learning more about microalgae growth and protein production in space could support development of sustainable alternatives to meat and dairy. Such alternatives could provide a food source on future space voyages and for people on Earth and be used to make biofuels and bioactive compounds in medicines.
Microscopic motion
Portland State University These swimming microalgae are visible thanks to the Extant Life Volumetric Imaging System or ELVIS, a fluorescent 3D imaging microscope that researchers are testing aboard the International Space Station. The investigation studies both active behaviors and genetic changes of microscopic algae and marine bacteria in response to spaceflight. ELVIS is designed to autonomously capture microscopic motion in 3D, a capability not currently available on the station. The technology could be useful for a variety of research in space and on Earth, such as monitoring water quality and detecting potentially infectious organisms.
Genetics of biofilms
BioServe This preflight image shows sample chambers for the Genetic Exchange in Microgravity for Biofilm Bioremediation (GEM-B2) investigation, which examines the mechanisms of gene transfer within biofilms under microgravity conditions. Biofilms are communities of microorganisms that collect and bind to a surface. They can clog and foul water systems, often leave a residue that can cause infections, and may become resistant to antibiotics. Researchers could use results from this work to develop genetic manipulations that inhibit biofilm formation, helping to maintain crew health and safety aboard the International Space Station and on future missions.
Learn more about microgravity research and technology development aboard the space station on this webpage.
Keep Exploring Discover More Topics From NASA
Space Station Research and Technology
Latest News from Space Station Research
Space Station Research Results
NASA Science, Cargo Launch on 32nd SpaceX Resupply Station Mission
View the full article
-
By NASA
Jeremy Johnson, a research pilot and aviation safety officer, poses in front of a PC-12 aircraft inside the hangar at NASA’s Glenn Research Center in Cleveland on Thursday, April 17, 2025. Johnson flies NASA planes to support important scientific research and testing.Credit: NASA/Sara Lowthian-Hanna Jeremy Johnson laces his black, steel-toed boots and zips up his dark blue flight suit. Having just finished a pre-flight mission briefing with his team, the only thing on his mind is heading to the aircraft hangar and getting a plane in the air.
As he eases a small white-and-blue propeller aircraft down the hangar’s ramp and onto the runway, he hears five essential words crackle through his headset: “NASA 606, cleared for takeoff.”
This is a typical morning for Johnson, a research pilot and aviation safety officer at NASA’s Glenn Research Center in Cleveland. Johnson flies NASA planes to support important scientific research and testing, working with researchers to plan and carry out flights that will get them the data they need while ensuring safety.
Johnson hasn’t always flown in NASA planes. He comes to the agency from the U.S. Air Force, where he flew missions all over the world in C-17 cargo aircraft, piloted unmanned reconnaissance operations out of California, and trained young aviators in Oklahoma on the fundamentals of flying combat missions.
Jeremy Johnson stands beside a C-17 aircraft before a night training flight in Altus, Oklahoma, in 2020. Before supporting vital flight research at NASA through a SkillBridge fellowship, which gives transitioning service members the opportunity to gain civilian work experience, Johnson served in the U.S. Air Force and flew C-17 airlift missions all over the world.Credit: Courtesy of Jeremy Johnson He’s at Glenn for a four-month Department of Defense SkillBridge fellowship. The program gives transitioning service members an opportunity to gain civilian work experience through training, apprenticeships, or internships during their last 180 days of service before separating from the military.
“I think SkillBridge has been an amazing tool to help me transition into what it’s like working somewhere that isn’t the military,” Johnson said. “In the Air Force, flying the mission was the mission. At NASA Glenn, the science—the research—is the mission.”
By flying aircraft outfitted with research hardware or carrying test equipment, Johnson has contributed to two vital projects at NASA so far. One is focused on testing how well laser systems can transmit signals for communication and navigation. The other, part of NASA’s research under Air Mobility Pathfinders, explores how 5G telecommunications infrastructure can help electric air taxis of the future be safely incorporated into the national airspace. This work, and the data that scientists can collect through flights, supports NASA’s research to advance technology and innovate for the benefit of all.
Jeremy Johnson pilots NASA Glenn Research Center’s PC-12 aircraft during a research flight on Thursday, April 17, 2025.Credit: NASA/Sara Lowthian-Hanna “It’s really exciting to see research hardware come fresh from the lab, and then be strapped onto an aircraft and taken into flight to see if it actually performs in a relevant environment,” Johnson said. “Every flight you do is more than just that flight—it’s one little part of a much bigger, much more ambitious project that’s going on. You remember, this is a small little piece of something that is maybe going to change the frontier of science, the frontier of discovery.”
Johnson has always had a passion for aviation. In college, he worked as a valet to pay for flying lessons. To hone his skills before Air Force training, one summer he flew across the country in a Cessna with his aunt, a commercial pilot. They flew down the Hudson River as they watched the skyscrapers of New York City whizz by and later to Kitty Hawk, North Carolina, where the Wright brothers made their historic first flight. Johnson even flew skydivers part-time while he was stationed in California.
Jeremy Johnson in the cockpit of a PC-12 aircraft as it exits the hangar at NASA’s Glenn Research Center in Cleveland before a research flight on Thursday, April 17, 2025.Credit: NASA/Sara Lowthian-Hanna Although he’s spent countless hours flying, he still takes the window seat on commercial flights whenever he can so he can look out the window and marvel at the world below.
Despite his successes, Johnson’s journey to becoming a pilot wasn’t always smooth. He recalls that as he was about to land after his first solo flight, violent crosswinds blew his plane off the runway and sent him bouncing into the grass. Though he eventually got back behind the stick for another flight, he said that in that moment he wondered whether he had the strength and skills to overcome his self-doubt.
“I don’t know anyone who flies for a living that had a completely easy path into it,” Johnson said. “To people who are thinking about getting into flying, just forge forward with it. Make people close doors on you, don’t close them on yourself, when it comes to flying or whatever you see yourself doing in the future. I just kept knocking on the door until there was a crack in it.”
Explore More
2 min read NASA, Boeing, Consider New Thin-Wing Aircraft Research Focus
Article 19 hours ago 3 min read Nine Finalists Advance in NASA’s Power to Explore Challenge
NASA has named nine finalists out of the 45 semifinalist student essays in the Power…
Article 2 days ago 4 min read NASA Tests Ultralight Antennas to Benefit Future National Airspace
Article 3 days ago View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A Boeing-built X-66 full-span model underwent testing in the 11-Foot Transonic Unitary Plan Facility at NASA’s Ames Research Center in California’s Silicon Valley between January and March 2025.NASA / Brandon Torres NASA and Boeing are currently evaluating an updated approach to the agency’s Sustainable Flight Demonstrator project that would focus on demonstrating thin-wing technology with broad applications for multiple aircraft configurations.
Boeing’s proposed focus centers on a ground-based testbed to demonstrate the potential for long, thin-wing technology. Work on the X-66 flight demonstrator – which currently incorporates a more complex transonic truss braced wing concept that uses the same thin wing technology as well as aerodynamic, structural braces — would pause for later consideration based on the thin-wing testbed results and further truss-braced configuration studies.
Under this proposal, all aspects of the X-66 flight demonstrator’s design, as well as hardware acquired or modified for it, would be retained while the long, thin-wing technology is being investigated with more focus. NASA and Boeing would also continue to collaborate on research into the transonic truss-braced wing concept.
The proposal is based on knowledge gained through research conducted under the Sustainable Flight Demonstrator project so far.
Since NASA issued the Sustainable Flight Demonstrator award in 2023, the project has made significant progress toward its goal of informing future generations of more sustainable commercial airliners. Boeing and NASA have collaborated on wind tunnel tests, computational fluid dynamics modeling, and structural design and analysis aimed at exploring how best to approach fuel-efficient, sustainable designs.
This research has built confidence in the substantial potential energy-savings benefits that technologies investigated through the Sustainable Flight Demonstrator project and other NASA research can make possible. The Boeing proposal identifies the thin-wing concept as having broad applications for potential incorporation into aircraft with and without truss braces.
NASA and Boeing are discussing potential options for advancing these sustainable flight technologies. NASA’s ultimate goal for this sustainable aircraft research is to achieve substantial improvements for next-generation airliner efficiency, lower costs for travelers, reduced fuel costs and consumption, and increase U.S. aviation’s technological leadership.
Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASAes Instagram logo @NASA@NASAaero@NASAes Linkedin logo @NASA Explore More
4 min read NASA Tests Ultralight Antennas to Benefit Future National Airspace
Article 2 days ago 2 min read A Fond Farewell: NASA’s C-130 Begins New Mission in California
Article 6 days ago 3 min read NASA Studies Wind Effects and Aircraft Tracking with Joby Aircraft
Article 7 days ago Keep Exploring Discover More Topics From NASA
Missions
Sustainable Flight Demonstrator Project
Aeronautics STEM
Explore NASA’s History
Share
Details
Last Updated Apr 24, 2025 EditorLillian GipsonContactRobert Margettarobert.j.margetta@nasa.gov Related Terms
Aeronautics Aeronautics Research Mission Directorate Green Aviation Tech Integrated Aviation Systems Program Sustainable Flight Demonstrator View the full article
-
By NASA
NASA astronaut and Expedition 73 Flight Engineer Jonny KimCredit: Gagarin Cosmonaut Training Center Students from Santa Monica, California, will connect with NASA astronaut Jonny Kim as he answers prerecorded science, technology, engineering, and mathematics-related questions aboard the International Space Station.
Watch the 20-minute space-to-Earth call at 12:10 p.m. EDT on Tuesday, April 29, on the NASA STEM YouTube Channel.
Media interested in covering the event must RSVP by 5 p.m., Friday, April 25, to Esmi Careaga at: ecareaga@smmusd.org or 805-651-3204 x71582.
The event is hosted by Santa Monica High School, Kim’s alma mater, and includes students from Roosevelt Elementary School and Lincoln Middle School in Santa Monica. The schools hope to inspire students to follow their dreams and explore their passions through curiosity, service, and interest in learning.
For more than 24 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
Important research and technology investigations taking place aboard the space station benefit people on Earth and lays the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars, inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery.
See videos highlighting space station research at:
https://www.nasa.gov/stemonstation
-end-
Gerelle Dodson
Headquarters, Washington
202-358-1600
gerelle.q.dodson@nasa.gov
Sandra Jones
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov
Share
Details
Last Updated Apr 23, 2025 LocationNASA Headquarters Related Terms
NASA Headquarters Humans in Space International Space Station (ISS) Johnson Space Center View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.