Jump to content

How Do I Navigate NASA Learning Resources and Opportunities?


NASA

Recommended Posts

  • Publishers
4 Min Read

How Do I Navigate NASA Learning Resources and Opportunities?

Madyson Knox experiments with UV-sensitive beads.

NASA offers a variety of platforms and resources to support kindergarten through college educators in bringing the excitement of exploration and discovery to students in the classroom and beyond. From in-depth lesson plans to supplemental videos and activities, the resources below can help educators develop an out-of-this world curriculum and create unforgettable experiences for their students.

Where Can I Find NASA STEM Learning Resources for My Classroom?

learning-resources-screenshot.png?w=1873

NASA’s website has a dedicated section for the agency’s learning resources: nasa.gov/learning-resources. Using the navigation bar, educators can click through to find dedicated pages with STEM resources for K-4, 5-8, and 9-12 grade bands.

Looking for something in particular for your curriculum? Try the NASA STEM Resource Search tool to explore hands-on activities, interactive features, videos, lesson plans, educator guides, and more. Browse the nearly 2,000 resources or search by grade level, subject, or keywords.

NASA also offers a range of resources and community-based projects that invite learners of all ages to participate in authentic science across the U.S. and the world through the Science Activation (SciAct) program. In addition to traditional classroom resources, NASA has a webpage dedicated to citizen science opportunities around the globe, which can be fun to participate in as a class.

How Do I Connect My Classroom With a NASA Expert?

NHQ201806270029~large.jpg?w=1920&h=1283&

NASA has several pathways for getting a NASA expert involved with your classroom. 

Students can get questions answered by astronauts living and working aboard the International Space Station through In-Flight Education Downlinks. These twenty-minute live Q&A sessions are available to U.S.-based education organizations. Applications are accepted during several proposal periods each year. 

Educators can also request classroom engagements with NASA engineers, scientists, and other professionals through the NASA Engages program. The program connects NASA experts with U.S. students ranging from preschool to college, through formal or informal education groups such as libraries, museums, professional and technical organizations, afterschool programs, and other non-profit organizations. Requests can be made in the NASA STEM Gateway platform after creating an account.

NASA STEM Gateway is also the portal where educators and students can sign up for other NASA opportunities, such as internships, student challenges, and more.

How Can I Obtain an Authentic Space Program Artifact for Use in My Classroom?

A collage showing an astronaut glove, a Hubble mockup and a piece of equipment

U.S. K-12 schools, universities, and other organizations may be eligible to request an authentic NASA artifact to help bring STEM lessons to life in the classroom. NASA considers an “artifact” to be an object representing historically significant or innovative achievements in spaceflight, aviation, technology, or science. Through NASA’s Artifact Module, browse through the agency’s trove of objects and request an item that will spark inspiration or understanding among students in the Artemis Generation.

How Can I Find Out About New NASA STEM Resources and Opportunities?

A person looking through a telescope at dusk

To learn about the latest NASA STEM resources and opportunities, follow NASA STEM on X, Facebook, Pinterest, and YouTube. NASA also publishes a weekly e-newsletter for teachers, parents, caregivers, and students. Sign up for the NASA EXPRESS newsletter to get the latest NASA STEM opportunities delivered to your inbox every Thursday. It’s an easy way to stay up to date on internships, challenges, professional development, and more.

NASA also has an online community of practice for formal and informal educators called CONNECTS (Connecting Our NASA Network of Educators for Collaborating Together in STEM). On the CONNECTS platform, new and experienced professionals in STEM education can join discussions, share best practices, learn about the latest events and opportunities at NASA, participate in professional development opportunities, and download free STEM products available by topic or grade level. Registered community members can chat with other members who are interested in similar fields and can find nearby members with whom they can collaborate.

More About STEM Learning Resources and Opportunities at NASA

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The Soyuz rocket launches to the International Space Station with Expedition 72 crew members: NASA astronaut Don Pettit, Roscosmos cosmonauts Alexey Ovchinin, and Ivan Vagner, onboard, Wednesday, Sept. 11, 2024, at the Baikonur Cosmodrome in Kazakhstan. Credit: NASA/Bill Ingalls NASA astronaut Don Pettit, accompanied by Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner, arrived at the International Space Station Wednesday, bringing its number of residents to 12 for the 13-day handover period.

      After a two-orbit, three-hour journey to the station, the Roscosmos Soyuz MS-26 spacecraft automatically docked to the orbiting laboratory’s Rassvet module at 3:32 p.m. EDT. The spacecraft launched at 12:23 p.m. EDT (9:23 p.m. Baikonur time) from the Baikonur Cosmodrome in Kazakhstan.
      NASA’s coverage of hatch opening will stream at 5:30 p.m. on NASA+, the NASA app, YouTube, and the agency’s website. Hatch opening is scheduled to begin at 5:50 p.m. Learn how to stream NASA content through a variety of platforms, including social media.

      Once aboard, the trio will join Expedition 71 crew members, including NASA astronauts Tracy C. Dyson, Mike Barratt, Matthew Dominick, Jeanette Epps, Butch Wilmore, and Suni Williams, as well as Roscosmos cosmonauts Nikolai Chub, Alexander Grebenkin, and Oleg Kononenko. Expedition 72 will begin Monday, Sept. 23, upon the departure of Dyson, Chub, and off-going station commander Kononenko, completing a six-month stay for Dyson and a year-long expedition for Chub and Kononenko.

      Pettit, Ovchinin, and Vagner will spend approximately six months aboard the orbital outpost advancing scientific research as Expedition 71/72 crew members before returning to Earth in the spring of 2025. This is Pettit and Ovchinin’s fourth spaceflight and Vagner’s second.

      During Expedition 72, two new crews will arrive aboard the space station, including NASA’s SpaceX Crew-9 launching in September, followed by Crew-10, scheduled for launch in February 2025.  

      Follow Pettit on X throughout his mission and get the latest space station crew news on Instagram, Facebook, and X.

      Learn more about International Space Station research and operations at:
      https://www.nasa.gov/station
      -end-
      Joshua Finch / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov

      Leah Cheshier
      Johnson Space Center, Houston
      281-483-5111
      leah.d.cheshier@nasa.gov
      View the full article
    • By NASA
      This artist’s concept depicts NASA’s Europa Clipper spacecraft in orbit around Jupiter. The mission is targeting an Oct. 10, 2024, launch. NASA/JPL-Caltech NASA will host a news conference at 11 a.m. EDT Tuesday, Sept. 17, at the agency’s Jet Propulsion Laboratory in Southern California to discuss the upcoming Europa Clipper mission to Jupiter’s icy moon Europa.
      The briefing will be open to media and will air live on NASA+ and the agency’s website, plus Facebook, X, and YouTube. Learn how to stream NASA content through a variety of platforms, including social media.
      Participants in the news conference include:
      Gina DiBraccio, acting director, Planetary Science Division, NASA Headquarters Jordan Evans, project manager, Europa Clipper, NASA’s Jet Propulsion Laboratory Bonnie Buratti, deputy project scientist, Europa Clipper, JPL Stuart Hill, propulsion module delivery manager, Johns Hopkins University Applied Physics Laboratory Armando Piloto, senior mission manager, NASA’s Launch Services Program To ask questions by phone, members of the media must RSVP no later than two hours before the start of the event to Rexana Vizza at: rexana.v.vizza@jpl.nasa.gov.
      Members of the news media from the U.S. and non-designated countries who are interested in covering the event in person at JPL must arrange access in advance by contacting Rexana Vizza at: rexana.v.vizza@jpl.nasa.gov no later than 3 p.m. EDT (12 p.m. PDT) on Thursday, Sept. 12. Media representatives must provide one form of government-issued photo identification. Non-U.S. citizens will need to bring a passport or a green card. NASA’s media accreditation policy is available online.
      Questions can be asked on social media during the briefing using the hashtag #AskNASA.
      Europa is one of the most promising places in our solar system to find an environment suitable for life beyond Earth. Evidence suggests that the ocean beneath Europa’s icy surface could contain the ingredients for life — water, the right chemistry, and energy. While Europa Clipper is not a life-detection mission, it will answer key questions about the moon’s potential habitability.
      Europa Clipper’s launch period opens on Thursday, Oct. 10. The spacecraft, the largest NASA has ever built for a planetary mission, will launch on a SpaceX Falcon Heavy rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.
      Managed by Caltech in Pasadena, California, JPL leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, for NASA’s Science Mission Directorate in Washington. The main spacecraft body was designed by APL in collaboration with JPL and NASA’s Goddard Space Flight Center in Greenbelt, Maryland. The Planetary Missions Program Office at NASA’s Marshall Space Flight Center in Huntsville, Alabama, executes program management of the Europa Clipper mission. NASA’s Launch Services Program, based at Kennedy, manages the launch service for the Europa Clipper spacecraft.
      To learn more about Europa Clipper, visit:
      https://europa.nasa.gov
      -end-
      Karen Fox / Molly Wasser
      Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov

      Val Gratias / Gretchen McCartney
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-318-2141 / 818-393-6215
      valerie.m.gratias@jpl.nasa.gov / gretchen.p.mccartney@jpl.nasa.gov
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This bar graph shows GISTEMP summer global temperature anomalies for 2023 (shown in yellow) and 2024 (shown in red). June through August is considered meteorological summer in the Northern Hemisphere. The white lines indicate the range of estimated temperatures. The warmer-than-usual summers continue a long-term trend of warming, driven primarily by human-caused greenhouse gas emissions. NASA/Peter Jacobs The agency also shared new state-of-the-art datasets that allow scientists to track Earth’s temperature for any month and region going back to 1880 with greater certainty.

      August 2024 set a new monthly temperature record, capping Earth’s hottest summer since global records began in 1880, according to scientists at NASA’s Goddard Institute for Space Studies (GISS) in New York. The announcement comes as a new analysis upholds confidence in the agency’s nearly 145-year-old temperature record.
      June, July, and August 2024 combined were about 0.2 degrees Fahrenheit (about 0.1 degrees Celsius) warmer globally than any other summer in NASA’s record — narrowly topping the record just set in 2023. Summer of 2024 was 2.25 F (1.25 C) warmer than the average summer between 1951 and 1980, and August alone was 2.34 F (1.3 C) warmer than average. June through August is considered meteorological summer in the Northern Hemisphere.
      “Data from multiple record-keepers show that the warming of the past two years may be neck and neck, but it is well above anything seen in years prior, including strong El Niño years,” said Gavin Schmidt, director of GISS. “This is a clear indication of the ongoing human-driven warming of the climate.”
      NASA assembles its temperature record, known as the GISS Surface Temperature Analysis (GISTEMP), from surface air temperature data acquired by tens of thousands of meteorological stations, as well as sea surface temperatures from ship- and buoy-based instruments. It also includes measurements from Antarctica. Analytical methods consider the varied spacing of temperature stations around the globe and urban heating effects that could skew the calculations.
      The GISTEMP analysis calculates temperature anomalies rather than absolute temperature. A temperature anomaly shows how far the temperature has departed from the 1951 to 1980 base average.
      New assessment of temperature record
      The summer record comes as new research from scientists at the Colorado School of Mines, National Science Foundation, the National Atmospheric and Oceanic Administration (NOAA), and NASA further increases confidence in the agency’s global and regional temperature data.
      “Our goal was to actually quantify how good of a temperature estimate we’re making for any given time or place,” said lead author Nathan Lenssen, a professor at the Colorado School of Mines and project scientist at the National Center for Atmospheric Research (NCAR).
      This visualization of GISTEMP monthly temperatures with the seasonal cycle derived from the Global Modeling and Assimilation Office’s MERRA-2 model compares 2023 (in red) and 2024 (in purple), with a transparent ribbon around each indicating the confidence intervals from the new GISTEMP uncertainty calculation. The white lines show monthly temperatures from the years 1961 to 2022. June, July, and August 2024 combined were about 0.2 degrees Fahrenheit (about 0.1 degrees Celsius) warmer globally than any other summer in NASA’s record — narrowly topping the record set in 2023.NASA/Peter Jacobs/Katy Mersmann The researchers affirmed that GISTEMP is correctly capturing rising surface temperatures on our planet and that Earth’s global temperature increase since the late 19th century — summer 2024 was about 2.7 F (1.51 C) warmer than the late 1800s — cannot be explained by any uncertainty or error in the data.
      The authors built on previous work showing that NASA’s estimate of global mean temperature rise is likely accurate to within a tenth of a degree Fahrenheit in recent decades. For their latest analysis, Lenssen and colleagues examined the data for individual regions and for every month going back to 1880.  
      Estimating the unknown
      Lenssen and colleagues provided a rigorous accounting of statistical uncertainty within the GISTEMP record. Uncertainty in science is important to understand because we cannot take measurements everywhere. Knowing the strengths and limitations of observations helps scientists assess if they’re really seeing a shift or change in the world.
      The study confirmed that one of the most significant sources of uncertainty in the GISTEMP record is localized changes around meteorological stations. For example, a previously rural station may report higher temperatures as asphalt and other heat-trapping urban surfaces develop around it. Spatial gaps between stations also contribute some uncertainty in the record. GISTEMP accounts for these gaps using estimates from the closest stations.
      Previously, scientists using GISTEMP estimated historical temperatures using what’s known in statistics as a confidence interval — a range of values around a measurement, often read as a specific temperature plus or minus a few fractions of degrees. The new approach uses a method known as a statistical ensemble: a spread of the 200 most probable values. While a confidence interval represents a level of certainty around a single data point, an ensemble tries to capture the whole range of possibilities.
      The distinction between the two methods is meaningful to scientists tracking how temperatures have changed, especially where there are spatial gaps. For example: Say GISTEMP contains thermometer readings from Denver in July 1900, and a researcher needs to estimate what conditions were 100 miles away. Instead of reporting the Denver temperature plus or minus a few degrees, the researcher can analyze scores of equally probable values for southern Colorado and communicate the uncertainty in their results.
      What does this mean for recent heat rankings?
      Every year, NASA scientists use GISTEMP to provide an annual global temperature update, with 2023 ranking as the hottest year to date.
      Other researchers affirmed this finding, including NOAA and the European Union’s Copernicus Climate Change Service. These institutions employ different, independent methods to assess Earth’s temperature. Copernicus, for instance, uses an advanced computer-generated approach known as reanalysis. 
      The records remain in broad agreement but can differ in some specific findings. Copernicus determined that July 2023 was Earth’s hottest month on record, for example, while NASA found July 2024 had a narrow edge. The new ensemble analysis has now shown that the difference between the two months is smaller than the uncertainties in the data. In other words, they are effectively tied for hottest. Within the larger historical record the new ensemble estimates for summer 2024 were likely 2.52-2.86 degrees F (1.40-1.59 degrees C) warmer than the late 19th century, while 2023 was likely 2.34-2.68 degrees F (1.30-1.49 degrees C) warmer.

      Read More Share
      Details
      Last Updated Sep 11, 2024 LocationGISS Related Terms
      Earth Climate Change Goddard Institute for Space Studies Goddard Space Flight Center Explore More
      6 min read Childhood Snow Days Transformed Linette Boisvert into a Sea Ice Scientist
      Article 1 day ago 7 min read Kyle Helson Finds EXCITE-ment in Exoplanet Exploration
      Article 1 day ago 5 min read NASA’s Hubble, Chandra Find Supermassive Black Hole Duo
      Like two Sumo wrestlers squaring off, the closest confirmed pair of supermassive black holes have…
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      The attacks of Sept. 11, 2001 were a national tragedy that resulted in a staggering loss of life and a significant change in American culture. Each year, we pause and remember. Beyond honoring the Americans who died that day, NASA also assisted FEMA in New York in the days afterward, and remembered the victims by providing flags flown aboard the Space Shuttle to their families.
      NASA astronaut Jessica Meir photographed the New York City area from the International Space Station in March 2020. Credits: NASA European Space Agency astronaut Thomas Pesquet photographed the city Washington D.C. and the surrounding area on April 11, 2017, from his vantage point aboard the International Space Station. Credits: ESA/NASA Astronaut Frank Culbertson – The Only American Off the Planet
      Expedition 3 Commander Frank Culbertson was aboard the International Space Station at the time of the attacks, and the only American on the crew. As soon as he learned of the attacks, he began documenting the event in photographs because the station was flying over the New York City area. He captured incredible images in the minutes and hours following the event. From his unique vantage point in space, he recorded his thoughts of the world changing beneath him.
      Watch Video: Culbertson Remembers 9/11
      The following day, he posted a public letter that captured his initial thoughts of the events as they unfolded. “The world changed today. What I say or do is very minor compared to the significance of what happened to our country today when it was attacked.”
      Upon further reflection, Culbertson said, “It’s horrible to see smoke pouring from wounds in your own country from such a fantastic vantage point. The dichotomy of being on a spacecraft dedicated to improving life on the earth and watching life being destroyed by such willful, terrible acts is jolting to the psyche, no matter who you are.”
      Read Culbertson’s Full Letter
      Video: Station Astronauts Honor 9/11 Victims
      Visible from space, a smoke plume rises from the Manhattan area after two planes crashed into the towers of the World Trade Center. This photo was taken of metropolitan New York City (and other parts of New York as well as New Jersey) the morning of September 11, 2001. Credits: NASA NASA Science Programs Monitor the Air
      NASA science programs were called into action after Sept. 11, 2001, as the agency worked with FEMA to fly sensors over the affected areas on aircraft looking for aerial contaminants and used satellite resources to monitor from above.
      Flags for Heroes and Families
      View of New York City from orbit on Sept. 11, 2001. Credit: NASA/Frank Culbertson NASA flew nearly 6,000 4 by 6 inch flags on Endeavour’s flight during STS-108 to honor the victims of the terrorist attacks in New York, Washington, D.C. and Pennsylvania. Students working at Johnson Space Center in Houston, Texas assembled the commemorative packages, including the U.S. flags flown in space, to be presented to relatives of the victims. Distribution began on June 14, 2002, National Flag Day, at a ceremony held at the American Museum of Natural History’s Rose Center for Earth and Space in New York.
      “The ‘Flags for Heroes and Families’ campaign is a way for us to honor and show our support for the thousands of brave men and women who have selflessly contributed to the relief and recovery efforts,” said then-NASA Administrator Dan Goldin. “The American flags are a patriotic symbol of our strength and solidarity, and our Nation’s resolve to prevail.”
      “NASA wanted to come up with an appropriate tribute to the people who lost their lives in the tragic events of September 11,” added Goldin. “America’s space program has a long history of carrying items into space to commemorate historic events, acts of courage and dramatic achievements. ‘Flags for Heroes and Families’ is a natural extension of this ongoing outreach project.”
      Read More About ‘Flags for Heroes and Families’→
      Commemoration Goes to Mars
      View of New York City from orbit on Sept. 11, 2001. Credit: NASA/Frank Culbertson In September 2001, Honeybee Robotics employees in lower Manhattan were building a pair of tools for grinding weathered rinds off rocks on Mars, so that scientific instruments on NASA’s Mars Exploration Rovers Spirit and Opportunity could inspect the rocks’ interiors.
      That month’s attack on the twin towers of the World Trade Center, less than a mile away, shook the lives of the employees and millions of others.
      Work on the rock abrasion tools needed to meet a tight schedule to allow thorough testing before launch dates governed by the motions of the planets. The people building the tools could not spend much time helping at shelters or in other ways to cope with the life-changing tragedy of Sept. 11. However, they did find a special way to pay tribute to the thousands of victims who perished in the attack.
      An aluminum cuff serving as a cable shield on each of the rock abrasion tools on Mars was made from aluminum recovered from the destroyed World Trade Center towers. The metal bears the image of an American flag and fills a renewed purpose as part of solar system exploration.
      One day, both rovers will be silent. In the cold, dry environments where they have worked on Mars, the onboard memorials to victims of the Sept. 11 attack could remain in good condition for millions of years.
      Read More About the Rovers’ 9/11 Tribute
      NASA Kennedy Adds Florida Touch to Sept. 11 Flag
      The contributions of NASA and Kennedy Space Center were stitched into the fabric of one of the nation’s most recognizable symbols, when flags from Florida’s Spaceport were sewn into an American Flag recovered near ground zero following the Sept. 11, 2001, attacks.
       
      The National 9/11 Flag was raised over the Rocket Garden at the Kennedy Space Center Visitor Complex after Florida’s contribution was added. Credits: NASA/Kim Shiflett “A few days after the collapse of the World Trade Center this flag was hanging on a scaffolding at 90 West Street, which was a building directly south of the World Trade Center that was heavily damaged when the south tower collapsed,” said Jeff Parness, director, founder and chairman of the “New York Says Thank You Foundation.”
      The flag went on to become one of the most enduring symbols of the recovery from the attack. “The National 9/11 Flag” is a permanent part of the collection of the National September 11 Memorial Museum at the World Trade Center site. There, America’s flag can evoke a sense of pride, unity and hunger to keep achieving greatness, just as the nation’s space program has for more than half a century.
      Read More
      Video: Kennedy Adds Florida Touch to 9/11 Flag
       
      View the full article
    • By NASA
      5 Min Read 9 Phenomena NASA Astronauts Will Encounter at Moon’s South Pole
      An artist’s rendering of an Artemis astronaut working on the Moon’s surface. Credits:
      NASA NASA’s Artemis campaign will send the first woman and the first person of color to the Moon’s south polar region, marking humanity’s first return to the lunar surface in more than 50 years.
      Here are some out-of-this-world phenomena Artemis astronauts will experience:
      1. A Hovering Sun and Giant Shadows
      This visualization shows the motions of Earth and the Sun as viewed from the South Pole of the Moon.
      NASA’s Goddard Space Flight Center Near the Moon’s South Pole, astronauts will see dramatic shadows that are 25 to 50 times longer than the objects casting them. Why? Because the Sun strikes the surface there at a low angle, hanging just a few degrees above the horizon. As a result, astronauts won’t see the Sun rise and set. Instead, they’ll watch it hover near the horizon as it moves horizontally across the sky.

      2. Sticky, Razor-Sharp Dust …
      This dust particle came from a lunar regolith sample brought to Earth in 1969 by Apollo 11 astronauts. The particle is about 25 microns across, less than the width of an average human hair. The image was taken with a scanning electron microscope. The lunar dust, called regolith, that coats the Moon’s surface looks fine and soft like baking powder. But looks can be deceiving. Lunar regolith is formed when meteoroids hit the Moon’s surface, melting and shattering rocks into tiny, sharp pieces. The Moon doesn’t have moving water or wind to smooth out the regolith grains, so they stay sharp and scratchy, posing a risk to astronauts and their equipment.

      3. … That’s Charged with Static Electricity
      Astronaut Eugene Cernan, commander of Apollo 17, inside the lunar module on the Moon after his second moonwalk of the mission in 1972. His spacesuit and face are covered in lunar dust. Because the Moon has no atmosphere to speak of, its surface is exposed to plasma and radiation from the Sun. As a result, static electricity builds up on the surface, as it does when you shuffle your feet against a carpeted floor. When you then touch something, you transfer that charge via a small shock. On the Moon, this transfer can short-circuit electronics. Moon dust also can make its way into astronaut living quarters, as the static electricity causes it to easily stick to spacesuits. NASA has developed methods to keep the dust at bay using resistant textiles, filters, and a shield that employs an electric field to remove dust from surfaces.

      4. A New Sense of Lightness
      In 1972, Apollo 16 astronaut Charles Duke hammered a core tube into the Moon’s surface until it met a rock and wouldn’t go any farther. Then the hammer flew from his hand. He made four attempts to pick it up by bending down and leaning to reach for it. He gave up and returned to the rover to get tongs to finally pick up the hammer successfully.
      NASA’s Johnson Space Center Artemis moonwalkers will have a bounce to their step as they traverse the lunar surface. This is because gravity won’t pull them down as forcefully as it does on Earth. The Moon is only a quarter of Earth’s size, with six times less gravity. Simple activities, like swinging a rock hammer to chip off samples, will feel different. While a hammer will feel lighter to hold, its inertia won’t change, leading to a strange sensation for astronauts. Lower gravity has perks, too. Astronauts won’t be weighed down by their hefty spacesuits as much as they would be on Earth. Plus, bouncing on the Moon is just plain fun.

      5. A Waxing Crescent … Earth?
      This animated image features a person holding a stick with a sphere on top that represents the Moon. The person is demonstrating an activity that helps people learn about the phases of the Moon by acting them out. NASA’s Jet Propulsion Laboratory When Artemis astronauts look at the sky from the Moon, they’ll see their home planet shining back at them. Just like Earthlings see different phases of the Moon throughout a month, astronauts will see an ever-shifting Earth. Earth phases occur opposite to Moon phases: When Earth experiences a new Moon, a full Earth is visible from the Moon.

      6. An Itty-Bitty Horizon 
      A view from the Apollo 11 spacecraft in July 1969 shows Earth rising above the Moon’s horizon. NASA Because the Moon is smaller than Earth, its horizon will look shorter and closer. To someone standing on a level Earth surface, the horizon is 3 miles away, but to astronauts on the Moon, it’ll be only 1.5 miles away, making their surroundings seem confined.

      7. Out-of-This-World Temperatures
      This graphic shows maximum summer and winter temperatures near the lunar South Pole. Purple, blue, and green identify cold regions, while yellow to red signify warmer ones. The graphic incorporates 10 years of data from NASA’s LRO (Lunar Reconnaissance Orbiter), which has been orbiting the Moon since 2009.
      NASA/LRO Diviner Seasonal Polar Data Because sunlight at the Moon’s South Pole skims the surface horizontally, it brushes crater rims, but doesn’t always reach their floors. Some deep craters haven’t seen the light of day for billions of years, so temperatures there can dip to minus 334 F. That’s nearly three times colder than the lowest temperature recorded in Antarctica. At the other extreme, areas in direct sunlight, such as crater rims, can reach temperatures of 130 F.

      8. An Inky-Black Sky
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      An animated view of Earth emerging below the horizon as seen from the Moon’s South Pole. This visual was created using a digital elevation map from LRO’s laser altimeter, LOLA. NASA’s Scientific Visualization Studio The Moon, unlike Earth, doesn’t have a thick atmosphere to scatter blue light, so the daytime sky is black. Astronauts will see a stark contrast between the dark sky and the bright ground.

      9. A Rugged Terrain 
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      An overhead view of the Moon, beginning with a natural color from a distance and changing to color-coded elevation as the camera comes closer. The visual captures the rugged terrain of the lunar South Pole area. It includes a color key and animated scale bar. This visual was created using a digital elevation map from NASA LRO’s laser altimeter, LOLA. NASA’s Scientific Visualization Studio Artemis moonwalkers will find a rugged landscape that takes skill to traverse. The Moon has mountains, valleys, and canyons, but its most notable feature for astronauts on the surface may be its millions of craters. Near the South Pole, gaping craters and long shadows will make it difficult for astronauts to navigate. But, with training and special gear, astronauts will be prepared to meet the challenge.

      By Avery Truman
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Sep 11, 2024 Related Terms
      Artemis Earth’s Moon Exploration Systems Development Mission Directorate Humans in Space Missions NASA Directorates Planetary Science Division Science Mission Directorate The Solar System Explore More
      5 min read Voyager 1 Team Accomplishes Tricky Thruster Swap


      Article


      21 hours ago
      5 min read NASA’s Hubble, Chandra Find Supermassive Black Hole Duo


      Article


      2 days ago
      2 min read NASA Summer Camp Inspires Future Climate Leaders


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
  • Check out these Videos

×
×
  • Create New...