Members Can Post Anonymously On This Site
Senate confirms Maj. Gen. John J. DeGoes as next Air Force surgeon general
-
Similar Topics
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
In a series of baseline flights beginning on June 24, 2024, the G-IV aircraft flew over the Antelope Valley to analyze aircraft performance. To accommodate a new radar instrument developed by JPL, NASA’s Airborne Science Program has selected the Gulfstream-IV aircraft to be modified and operated by Armstrong Flight Research Center in Edwards, California and will accommodate new instrumentation on board in support of the agency’s science mission directorate. Baseline flights began at NASA Armstrong in June 2024NASA/Carla Thomas In June 2024, a new tail number swept the sky above NASA’s Armstrong Flight Research Center in Edwards, California. Pilots conducted flights of a Gulfstream IV (G-IV) to evaluate its handling characteristics and to familiarize pilots with it before it begins structural modifications. The research plane is joining the center’s fleet serving NASA’s Airborne Science program.
The G-IV will carry the Next Generation Airborne Synthetic Aperture Radar (AIRSAR-NG), which sends and receives microwave signals to collect information about Earth’s topographic features and how they change over time. The goal for the team at NASA Armstrong is to modify the G-IV to accommodate three radars simultaneously.
“The AIRSAR-NG will be composed of three different Synthetic Aperture Radar antennas in one instrument to provide new insight into Earth’s surface more efficiently,” said Yunling Lou, principal investigator for the instrument at NASA’s Jet Propulsion Laboratory in Southern California. “The capabilities of this new instrument will facilitate new techniques, such as three-dimensional imaging, that will be useful for future space-borne missions.”
With those and other modifications being made, the G-IV will also be able to accommodate an increased load of science instruments, which could enable NASA to support more dynamic airborne science missions.
“This aircraft will aid Armstrong in continuing our long history of supporting airborne science for the agency and maintain the expertise in conducting successful science missions for years to come,” said Franzeska Becker, the G-IV project manager at NASA Armstrong.
Transferred in February from NASA’s Langley Research Center in Hampton, Virginia, the G-IV will undergo additional modifications overseen by NASA Armstrong’s team. Their goal is to enrich the agency’s airborne science program by outfitting the aircraft to function as a more capable and versatile research platform.
The knowledge and expertise of professionals at NASA centers like Armstrong (G-IV, ER-2, C-20) and Langley (777, G-III) will help enable the agency to produce a well-defined and airworthy platform for science instruments and airborne science missions.
Learn more about NASA’s Airborne Science program Learn more about NASA’s AirSar project Share
Details
Last Updated Aug 29, 2024 EditorDede DiniusContactErica HeimLocationArmstrong Flight Research Center Related Terms
Armstrong Flight Research Center NASA Aircraft Science in the Air Science Mission Directorate Explore More
2 min read First NASA-Supported Researcher to Fly on Suborbital Rocket
Article 24 hours ago 7 min read NASA Project in Puerto Rico Trains Students in Marine Biology
Article 1 day ago 6 min read Work Is Under Way on NASA’s Next-Generation Asteroid Hunter
Article 1 day ago Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Armstrong Programs & Projects
Armstrong Technologies
Armstrong Flight Research Center History
View the full article
-
By NASA
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A mirror that was later installed inside the telescope for NASA’s Near-Earth Object Surveyor shows a reflection of principal optical engineer Brian Monacelli during an inspection of the mirror’s surface at the agency’s Jet Propulsion Laboratory on July 17.NASA/JPL-Caltech A technician operates articulating equipment to rotate NEO Surveyor’s aluminum optical bench — part of the spacecraft’s telescope — in a clean room at NASA’s Jet Propulsion Laboratory in Southern California on July 17.NASA/JPL-Caltech The mirrors for NASA’s Near-Earth Object Surveyor space telescope are being installed and aligned, and work on other spacecraft components is accelerating.
NASA’s new asteroid-hunting spacecraft is taking shape at NASA’s Jet Propulsion Laboratory in Southern California. Called NEO Surveyor (Near-Earth Object Surveyor), this cutting-edge infrared space telescope will seek out the hardest-to-find asteroids and comets that might pose a hazard to our planet. In fact, it is the agency’s first space telescope designed specifically for planetary defense.
Targeting launch in late 2027, the spacecraft will travel a million miles to a region of gravitational stability — called the L1 Lagrange point — between Earth and the Sun. From there, its large sunshade will block the glare and heat of sunlight, allowing the mission to discover and track near-Earth objects as they approach Earth from the direction of the Sun, which is difficult for other observatories to do. The space telescope also may reveal asteroids called Earth Trojans, which lead and trail our planet’s orbit and are difficult to see from the ground or from Earth orbit.
NEO Surveyor relies on cutting-edge detectors that observe two bands of infrared light, which is invisible to the human eye. Near-Earth objects, no matter how dark, glow brightly in infrared as the Sun heats them. Because of this, the telescope will be able to find dark asteroids and comets, which don’t reflect much visible light. It also will measure those objects, a challenging task for visible-light telescopes that have a hard time distinguishing between small, highly reflective objects and large, dark ones.
This artist’s concept depicts NASA’s NEO Surveyor in deep space. The black-paneled angular structure in the belly of the spacecraft is the instrument enclosure that is being built at JPL. The mission’s infrared telescope will be installed inside the enclosure.NASA/JPL-Caltech “NEO Surveyor is optimized to help us to do one specific thing: enable humanity to find the most hazardous asteroids and comets far enough in advance so we can do something about them,” said Amy Mainzer, principal investigator for NEO Surveyor and a professor at the University of California, Los Angeles. “We aim to build a spacecraft that can find, track, and characterize the objects with the greatest chance of hitting Earth. In the process, we will learn a lot about their origins and evolution.”
Coming Into Focus
The spacecraft’s only instrument is its telescope. About the size of a washer-and-dryer set, the telescope’s blocky aluminum body, called the optical bench, was built in a JPL clean room. Known as a three-mirror anastigmat telescope, it will rely on curved mirrors to focus light onto its infrared detectors in such a way that minimizes optical aberrations.
“We have been carefully managing the fabrication of the spacecraft’s telescope mirrors, all of which were received in the JPL clean room by July,” said Brian Monacelli, principal optical engineer at JPL. “Its mirrors were shaped and polished from solid aluminum using a diamond-turning machine. Each exceeds the mission’s performance requirements.”
Monacelli inspected the mirror surfaces for debris and damage, then JPL’s team of optomechanical technicians and engineers attached the mirrors to the telescope’s optical bench in August. Next, they will measure the telescope’s performance and align its mirrors.
Complementing the mirror assembly are the telescope’s mercury-cadmium-telluride detectors, which are similar to the detectors used by NASA’s recently retired NEOWISE (short for Near-Earth Object Wide-field Infrared Survey Explorer) mission. An advantage of these detectors is that they don’t necessarily require cryogenic coolers or cryogens to lower their operational temperatures in order to detect infrared wavelengths. Cryocoolers and cryogens can limit the lifespan of a spacecraft. NEO Surveyor will instead keep its cool by using its large sunshade to block sunlight from heating the telescope and by occupying an orbit beyond that of the Moon, minimizing heating from Earth.
The telescope will eventually be installed inside the spacecraft’s instrument enclosure, which is being assembled in JPL’s historic High Bay 1 clean room where NASA missions such as Voyager, Cassini, and Perseverance were constructed. Fabricated from dark composite material that allows heat to escape, the enclosure will help keep the telescope cool and prevent its own heat from obscuring observations.
Once it is completed in coming weeks, the enclosure will be tested to make sure it can withstand the rigors of space exploration. Then it will be mounted on the back of the sunshade and atop the electronic systems that will power and control the spacecraft.
“The entire team has been working hard for a long time to get to this point, and we are excited to see the hardware coming together with contributions from our institutional and industrial collaborators from across the country,” said Tom Hoffman, NEO Surveyor’s project manager at JPL. “From the panels and cables for the instrument enclosure to the detectors and mirrors for the telescope — as well as components to build the spacecraft — hardware is being fabricated, delivered, and assembled to build this incredible observatory.”
Assembly of NEO Surveyor can be viewed 24 hours a day, seven days a week, via JPL’s live cam.
More About NEO Surveyor
The NEO Surveyor mission marks a major step for NASA toward reaching its U.S. Congress-mandated goal to discover and characterize at least 90% of the near-Earth objects more than 460 feet (140 meters) across that come within 30 million miles (48 million kilometers) of our planet’s orbit. Objects of this size can cause significant regional damage, or worse, should they impact the Earth.
The mission is tasked by NASA’s Planetary Science Division within the Science Mission Directorate; program oversight is provided by the Planetary Defense Coordination Office, which was established in 2016 to manage the agency’s ongoing efforts in planetary defense. NASA’s Planetary Missions Program Office at the agency’s Marshall Space Flight Center provides program management for NEO Surveyor.
The project is being developed by JPL and is led by principal investigator Amy Mainzer at UCLA. Established aerospace and engineering companies have been contracted to build the spacecraft and its instrumentation, including BAE Systems, Space Dynamics Laboratory, and Teledyne. The Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder will support operations, and IPAC-Caltech in Pasadena, California, is responsible for processing survey data and producing the mission’s data products. Caltech manages JPL for NASA.
More information about NEO Surveyor is available at:
https://science.nasa.gov/mission/neo-surveyor
News Media Contacts
Ian J. O’Neill
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-2649
ian.j.oneill@jpl.nasa.gov
Karen Fox / Alana Johnson
NASA Headquarters, Washington
202-358-1600 / 202-358-1501
karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov
2024-114
Share
Details
Last Updated Aug 28, 2024 Related Terms
NEO Surveyor (Near-Earth Object Surveyor Space Telescope) Comets Jet Propulsion Laboratory Near-Earth Asteroid (NEA) Planetary Defense Planetary Defense Coordination Office Explore More
5 min read NASA’s Europa Clipper Gets Set of Super-Size Solar Arrays
Article 23 hours ago 2 min read NASA’s DART Team Earns AIAA Space Systems Award for Pioneering Mission
NASA’s DART (Double Asteroid Redirection Test) mission continues to yield scientific discoveries and garner accolades for its groundbreaking…
Article 7 days ago 5 min read Danish Instrument Helps NASA’s Juno Spacecraft See Radiation
Article 1 week ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The National Aeronautics and Space Administration (NASA) seeks applicants interested in six to twelve month reimbursable details with the Office of General Counsel (OGC). Applicants must be current Federal Employees. Applicants should receive the approval of their supervisor before applying. Consisting of a Headquarters Office and nine Center-level legal offices, NASA OGC provides advice and legal support on cutting edge issues in support of NASA’s mission of research and exploration on behalf of the United States. Ideal candidates will be experienced legal practitioners ready to make an immediate contribution in one of the following areas.
Artificial Intelligence and Cybersecurity. Candidates for this detail area are prepared to offer insight in interpreting rapidly changing regulatory requirements, drafting guidance, anticipating future use cases, and working with various stakeholders and technical experts to define agency needs. Because of overlapping regulatory requirements and related governance schemes, familiarity with cyber-security requirements would also be highly valued in this detail. Employment Law. Candidates for this detail area have experience in providing high impact litigation services to the federal government. Experience with EEOC, MSPB, and federal court proceedings are highly desired. Ethics. Candidates for this detail area are experienced ethics attorneys capable of training and advising agency personnel on ethics matters in connection with NASA’s challenging mission and diverse ecosystem of partners and stakeholders. Procurement. Candidates for this detail area are experienced procurement attorneys interested in providing short term assistance for the coming fiscal year as NASA’s dynamic team of lawyers supports major acquisitions of technology and space capabilities. NASA prefers that these details be in person, with telework available consistent with Agency policy, but would consider a remote detail in some circumstances. In addition to Headquarters in Washington, D.C., NASA has locations in Alabama, California, Florida, Maryland, Mississippi, Ohio, Texas, and Virginia.
All applicants must possess a Juris Doctor (J.D.) or equivalent and be a member in good standing of a state bar (any jurisdiction). To apply, please email a cover letter, resume, and recent writing sample of no more than five (5) pages to hq-ogc-legalops@mail.nasa.gov. In your cover letter please indicate which detail area(s) interest you. Interested applicants may indicate more than one area of interest.
Please submit your application by September 9, 2024.
Apply via email Explore More
4 min read NASA Seeks Input for Astrobee Free-flying Space Robots
Article 2 hours ago 3 min read Station Science Top News: August 23, 2024
Article 4 hours ago 4 min read August 2024 Transformer of the Month: Selina Salgado
Article 3 days ago View the full article
-
By Space Force
History was made on Aug. 16, as six Space Force students out of basic military training became the first Guardians to graduate technical training at the U.S. Air Force Honor Guard at Joint Base Anacostia-Bolling.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.