Jump to content

Recommended Posts

Posted
low_STSCI-H-p-0124a-k-1340x520.png

Frosty white water ice clouds and swirling orange dust storms above a vivid rusty landscape reveal Mars as a dynamic planet in this sharpest view ever obtained by an Earth-based telescope. The Earth-orbiting Hubble telescope snapped this picture on June 26, when Mars was approximately 43 million miles (68 million km) from Earth -- its closest approach to our planet since 1988. Hubble can see details as small as 10 miles (16 km) across. Especially striking is the large amount of seasonal dust storm activity seen in this image. One large storm system is churning high above the northern polar cap [top of image], and a smaller dust storm cloud can be seen nearby. Another large dust storm is spilling out of the giant Hellas impact basin in the Southern Hemisphere [lower right].

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Hubble and Artificial Intelligence Explore the Night Sky Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 2 min read
      Hubble Observations Give “Missing” Globular Cluster Time to Shine
      This NASA Hubble Space Telescope image features a dense and dazzling array of blazing stars that form globular cluster ESO 591-12. NASA, ESA, and D. Massari (INAF — Osservatorio di Astrofisica e Scienza dello Spazio); Processing: Gladys Kober (NASA/Catholic University of America)
      Download this image

      A previously unexplored globular cluster glitters with multicolored stars in this NASA Hubble Space Telescope image. Globular clusters like this one, called ESO 591-12 or Palomar 8, are spherical collections of tens of thousands to millions of stars tightly bound together by gravity. Globular clusters generally form early in the galaxies’ histories in regions rich in gas and dust. Since the stars form from the same cloud of gas as it collapses, they typically hover around the same age. Strewn across this image of ESO 591-12 are a number of red and blue stars. The colors indicate their temperatures; red stars are cooler, while the blue stars are hotter.
      Hubble captured the data used to create this image of ESO 591-12 as part of a study intended to resolve individual stars of the entire globular cluster system of the Milky Way. Hubble revolutionized the study of globular clusters since earthbound telescopes are unable to distinguish individual stars in the compact clusters. The study is part of the Hubble Missing Globular Clusters Survey, which targets 34 confirmed Milky Way globular clusters that Hubble has yet to observe.
      The program aims to provide complete observations of ages and distances for all of the Milky Way’s globular clusters and investigate fundamental properties of still-unexplored clusters in the galactic bulge or halo. The observations will provide key information on the early stages of our galaxy, when globular clusters formed.
      Explore More

      Hubble’s Star Clusters


      Exploring the Birth of Stars

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Jul 03, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Galaxies, Stars, & Black Holes Globular Clusters Goddard Space Flight Center Star Clusters Stars Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Cosmic Adventure



      Hubble’s Night Sky Challenge



      Hubble’s 35th Anniversary


      View the full article
    • By Amazing Space
      🔴 LIVE: Earth From Space RIGHT NOW - ISS HD Camera Views | 24/7 Space Station Feed
    • By NASA
      Explore This Section Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read
      An Update From the 2025 Mars 2020 Science Team Meeting
      A behind-the-scenes look at the annual Mars 2020 Science Team Meeting
      Members of the Mars 2020 Science Team examine post-impact sediments within the Gardnos impact structure, northwest of Oslo, Norway, as part of the June 2025 Science Team Meeting. NASA/Katie Stack Morgan Written by Katie Stack Morgan, Mars 2020 Acting Project Scientist 
      The Mars 2020 Science Team gathered for a week in June to discuss recent science results, synthesize earlier mission observations, and discuss future plans for continued exploration of Jezero’s crater rim. It was also an opportunity to celebrate what makes this mission so special: one of the most capable and sophisticated science missions ever sent to Mars, an experienced and expert Science Team, and the rover’s many science accomplishments this past year.  
      We kicked off the meeting, which was hosted by our colleagues on the RIMFAX team at the University of Oslo, with a focus on our most recent discoveries on the Jezero crater rim. A highlight was the team’s in-depth discussion of spherules observed at Witch Hazel Hill, features which likely provide us the best chance of determining the origin of the crater rim rock sequence.   
      On the second day, we heard status updates from each of the science instrument teams. We then transitioned to a session devoted to “traverse-scale” syntheses. After 4.5 years of Perseverance on Mars and more than 37 kilometers of driving (more than 23 miles), we’re now able to analyze and integrate science datasets across the entire surface mission, looking for trends through space and time within the Jezero rock record. Our team also held a poster session, which was a great opportunity for in-person and informal scientific discussion.  
      The team’s modern atmospheric and environmental investigations were front and center on Day 3. We then rewound the clock, hearing new and updated analyses of data acquired during Perseverance’s earlier campaigns in Jezero’s Margin unit, crater floor, and western fan. The last day of the meeting was focused entirely on future plans for the Perseverance rover, including a discussion of our exploration and sampling strategy during the Crater Rim Campaign. We also looked further afield, considering where the rover might explore over the next few years.  
      Following the meeting, the Science Team took a one-day field trip to visit Gardnos crater, a heavily eroded impact crater with excellent examples of impact melt breccia and post-impact sediment fill. The team’s visit to Gardnos offered a unique opportunity to see and study impact-generated rock units like those expected on the Jezero crater rim and to discuss the challenges we have recognizing similar units with the rover on Mars. Recapping our Perseverance team meetings has been one of my favorite yearly traditions (see summaries from our 2022, 2023, and 2024 meetings) and I look forward to reporting back a year from now. As the Perseverance team tackles challenges in the year to come, we can seek inspiration from one of Norway’s greatest polar explorers, Fridtjof Nansen, who said while delivering his Nobel lecture, “The difficult is that which can be done at once; the impossible is that which takes a little longer.”
      Share








      Details
      Last Updated Jul 01, 2025 Related Terms
      Blogs Explore More
      2 min read Curiosity Blog, Sols 4584–4585: Just a Small Bump


      Article


      1 hour ago
      4 min read Curiosity Blog, Sols 4582-4583: A Rock and a Sand Patch


      Article


      3 days ago
      2 min read Curiosity Blog, Sols 4580-4581: Something in the Air…


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By Amazing Space
      LIVE - Earth From Space Views - Seen From The ISS
    • By NASA
      ESA/Hubble & NASA, M. J. Koss, A. J. Barth The light that the NASA/ESA Hubble Space Telescope collected to create this image reached the telescope after a journey of 250 million years. Its source was the spiral galaxy UGC 11397, which resides in the constellation Lyra (The Lyre). At first glance, UGC 11397 appears to be an average spiral galaxy: it sports two graceful spiral arms that are illuminated by stars and defined by dark, clumpy clouds of dust.
      What sets UGC 11397 apart from a typical spiral lies at its center, where a supermassive black hole containing 174 million times the mass of our Sun grows. As a black hole ensnares gas, dust, and even entire stars from its vicinity, this doomed matter heats up and puts on a fantastic cosmic light show.
      Material trapped by the black hole emits light from gamma rays to radio waves, and can brighten and fade without warning. But in some galaxies, including UGC 11397, thick clouds of dust hide much of this energetic activity from view in optical light. Despite this, UGC 11397’s actively growing black hole was revealed through its bright X-ray emission — high-energy light that can pierce the surrounding dust. This led astronomers to classify it as a Type 2 Seyfert galaxy, a category used for active galaxies whose central regions are hidden from view in visible light by a donut-shaped cloud of dust and gas.
      Using Hubble, researchers will study hundreds of galaxies that, like UGC 11397, harbor a supermassive black hole that is gaining mass. The Hubble observations will help researchers weigh nearby supermassive black holes, understand how black holes grew early in the universe’s history, and even study how stars form in the extreme environment found at the very center of a galaxy.
      Text credit: ESA
      Image credit: ESA/Hubble & NASA, M. J. Koss, A. J. Barth
      View the full article
  • Check out these Videos

×
×
  • Create New...