Members Can Post Anonymously On This Site
Managing Heat
-
Similar Topics
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Data from one of the two CubeSats that comprise NASA’s PREFIRE mission was used to make this data visualization showing brightness temperature — the intensity of infrared emissions — over Greenland. Red represents more intense emissions; blue indicates lower intensities. The data was captured in July.
NASA’s Scientific Visualization Studio The PREFIRE mission will help develop a more detailed understanding of how much heat the Arctic and Antarctica radiate into space and how this influences global climate.
NASA’s newest climate mission has started collecting data on the amount of heat in the form of far-infrared radiation that the Arctic and Antarctic environments emit to space. These measurements by the Polar Radiant Energy in the Far-Infrared Experiment (PREFIRE) are key to better predicting how climate change will affect Earth’s ice, seas, and weather — information that will help humanity better prepare for a changing world.
One of PREFIRE’s two shoebox-size cube satellites, or CubeSats, launched on May 25 from New Zealand, followed by its twin on June 5. The first CubeSat started sending back science data on July 1. The second CubeSat began collecting science data on July 25, and the mission will release the data after an issue with the GPS system on this CubeSat is resolved.
The PREFIRE mission will help researchers gain a clearer understanding of when and where the Arctic and Antarctica emit far-infrared radiation (wavelengths greater than 15 micrometers) to space. This includes how atmospheric water vapor and clouds influence the amount of heat that escapes Earth. Since clouds and water vapor can trap far-infrared radiation near Earth’s surface, they can increase global temperatures as part of a process known as the greenhouse effect. This is where gases in Earth’s atmosphere — such as carbon dioxide, methane, and water vapor — act as insulators, preventing heat emitted by the planet from escaping to space.
“We are constantly looking for new ways to observe the planet and fill in critical gaps in our knowledge. With CubeSats like PREFIRE, we are doing both,” said Karen St. Germain, director of the Earth Science Division at NASA Headquarters in Washington. “The mission, part of our competitively-selected Earth Venture program, is a great example of the innovative science we can achieve through collaboration with university and industry partners.”
Earth absorbs much of the Sun’s energy in the tropics; weather and ocean currents transport that heat toward the Arctic and Antarctica, which receive much less sunlight. The polar environment — including ice, snow, and clouds — emits a lot of that heat into space, much of which is in the form of far-infrared radiation. But those emissions have never been systematically measured, which is where PREFIRE comes in.
“It’s so exciting to see the data coming in,” said Tristan L’Ecuyer, PREFIRE’s principal investigator and a climate scientist at the University of Wisconsin, Madison. “With the addition of the far-infrared measurements from PREFIRE, we’re seeing for the first time the full energy spectrum that Earth radiates into space, which is critical to understanding climate change.”
This visualization of PREFIRE data (above) shows brightness temperatures — or the intensity of radiation emitted from Earth at several wavelengths, including the far-infrared. Yellow and red indicate more intense emissions originating from Earth’s surface, while blue and green represent lower emission intensities coinciding with colder areas on the surface or in the atmosphere.
The visualization starts by showing data on mid-infrared emissions (wavelengths between 4 to 15 micrometers) taken in early July during several polar orbits by the first CubeSat to launch. It then zooms in on two passes over Greenland. The orbital tracks expand vertically to show how far-infrared emissions vary through the atmosphere. The visualization ends by focusing on an area where the two passes intersect, showing how the intensity of far-infrared emissions changed over the nine hours between these two orbits.
The two PREFIRE CubeSats are in asynchronous, near-polar orbits, which means they pass over the same spots in the Arctic and Antarctic within hours of each other, collecting the same kind of data. This gives researchers a time series of measurements that they can use to study relatively short-lived phenomena like ice sheet melting or cloud formation and how they affect far-infrared emissions over time.
More About PREFIRE
The PREFIRE mission was jointly developed by NASA and the University of Wisconsin-Madison. A division of Caltech in Pasadena, California, NASA’s Jet Propulsion Laboratory manages the mission for NASA’s Science Mission Directorate and provided the spectrometers. Blue Canyon Technologies built and now operates the CubeSats, and the University of Wisconsin-Madison is processing and analyzing the data collected by the instruments.
To learn more about PREFIRE, visit:
https://science.nasa.gov/mission/prefire/
5 Things to Know About NASA’s Tiny Twin Polar Satellites Twin NASA Satellites Ready to Help Gauge Earth’s Energy Balance News Media Contacts
Jane J. Lee / Andrew Wang
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0307 / 626-379-6874
jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
2024-116
Share
Details
Last Updated Sep 03, 2024 Related Terms
PREFIRE (Polar Radiant Energy in the Far-InfraRed Experiment) Climate Change Earth Earth Science Polar Explore More
2 min read NASA Earth Science Education Collaborative Member Co-Authors Award-Winning Paper in Insects
On August 13, 2024, the publishers of the journal Insects notified authors of three papers…
Article 4 hours ago 5 min read NASA JPL Developing Underwater Robots to Venture Deep Below Polar Ice
Article 5 days ago 7 min read NASA Project in Puerto Rico Trains Students in Marine Biology
Article 6 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
2 min read
Celebrate the Heliophysics Big Year with Free Heliophysics and Math Webinars from NASA HEAT
The Heliophysics Big Year (HBY) is a global celebration of the Sun’s influence on Earth and the entire solar system. It began with the Annular Solar Eclipse on Oct. 14, 2023, continued through the Total Solar Eclipse on Apr. 8, 2024, and will conclude with Parker Solar Probe’s closest approach to the Sun in December 2024.
Challenged by the NASA Heliophysics Division to participate in as many Sun-related activities as possible, the NASA Heliophysics Education Activation Team (NASA HEAT) has been hosting a monthly webinar for formal and informal educators, science communicators, and other heliophysics enthusiasts to promote the understanding of heliophysics in alignment with monthly HBY themes. Each webinar’s content is designed with the Framework of Heliophysics Education in mind and maps directly to the Next Generation Science Standards (NGSS). Using the three main questions that heliophysicists investigate as a foundation, NASA HEAT cross-referenced heliophysics topics with the NGSS Disciplinary Core Ideas to create NGSS-aligned “heliophysics big ideas.” In each webinar, three math problems related to the theme are presented for beginner, intermediate, and advanced level learners. On average, there have been 30 attendees per webinar.
Register for upcoming webinars:
7/16/24 Physical and Mental Health
8/20/24 Back to School
9/17/24 Environment and Sustainability
10/15/24 Solar Cycle and Solar Max
11/19/24 Bonus Science
12/17/24 Parker’s Perihelion
NASA HEAT is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
A coronal mass ejection on Feb. 27, 2000 taken by SOHO LASCO C2. SOHO/ESA/NASA Share
Details
Last Updated Jul 09, 2024 Editor NASA Science Editorial Team Related Terms
2023 Solar Eclipse 2024 Solar Eclipse Heliophysics Heliophysics Division Parker Solar Probe (PSP) Science Activation The Sun Explore More
2 min read NASA’s Neurodiversity Network Interns Speak at National Space Development Conference
Article
23 hours ago
3 min read NASA Mission to Study Mysteries in the Origin of Solar Radio Waves
Article
1 day ago
1 min read NASA Science Activation Teams Present at National Rural STEM Summit
Article
4 days ago
Keep Exploring Discover More Topics From NASA
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Perseverance Rover
This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…
Parker Solar Probe
On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
Juno
NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…
View the full article
-
By NASA
A capsule containing the first products manufactured in space by Varda Space Industries and protected by a heat shield made at NASA’s Ames Research Center in California’s Silicon Valley lands at the Utah Test and Training Range on Feb. 21, 2024.Varda Space Industries/John Kraus Things are heating up in the atmosphere, and NASA is helping space start-ups stay cool.
NASA has decades of expertise in creating technology that protects spacecraft from the intense heat generated when entering an atmosphere. As emerging companies develop innovative ways to do business in space, they know where to turn – and the agency is responding by offering its know-how and the advanced materials invented here to help enable new uses for space with big benefits for humanity.
Since 1951, when Harvey Allen, an engineer at NASA’s Ames Research Center in California’s Silicon Valley, showed a blunt-shaped capsule helps deflect the heat of atmospheric entry, Ames has led the agency in designing, developing, and testing thermal protection systems (TPS). These heat shields protect re-entering spacecraft and their cargo, such as pieces of a 4.5-billion-year-old asteroid or astronauts who will travel in the Orion crew capsule.
“In the past, the government was the only entity that needed heat shields,” said David Hash, chief of the Entry Systems and Technology Division at Ames, “That’s changing dramatically today. Companies that see new opportunities for commercial activities in space now have a business case to launch spacecraft and bring them back to Earth. NASA is uniquely positioned to show them how to do it.”
NASA works to encourage commercial growth. With an increasing number of start-ups who have smart ideas but limited funding and spaceflight experience, NASA experts at Ames and Langley Research Center in Hampton, Virginia, are doing their part to help. And success is already in the air – or passing safely through it.
In the past, the government was the only entity that needed heat shields. That’s changing dramatically today.
David Hash
Chief, Entry Systems and Technology Division, NASA's Ames Research Center
On Feb. 21, Varda Space Industries of El Segundo, California, in partnership with Rocket Lab USA of Long Beach, California, returned to Earth the first product processed on its autonomous, free-flying, in-space manufacturing platform. The product is a pharmaceutical that may gain unique properties by forming in the near-absence of gravity. Ames made the spacecraft’s heat shield material, and Langley assisted Varda in developing their re-entry capsule through aeroscience expertise, systems design and analysis, and trade studies support.
Through a partnership agreement, Ames produced the thermal protection material, called C-PICA (Conformal Phenolic Impregnated Carbon Ablator), intended to bring down products from Varda’s factory in orbit for its first four missions. The material was originally developed at Ames, and February’s re-entry marked the first time a NASA-manufactured C-PICA heat shield ever returned from space.
“We performed extensive testing on the ground, in our arc jet facilities, where we can simulate the high temperatures of entry,” said Mairead Stackpoole, chief of the Thermal Protection Materials Branch at Ames, “but there’s nothing like a real spaceflight to test our systems. The Ames TPS team will soon take samples from the heat shield to analyze its performance in detail.”
NASA’s partnership with Varda will continue through a Tipping Point award from the agency’s Space Technology Mission Directorate (STMD). Managed by STMD’s Flight Opportunities program, this award will leverage technology transfer from Ames of the C-PICA production process, helping the small business establish its heat shield production and fully enter the space market, as well as a flight test to evaluate the material’s performance. A joint effort between NASA, the Air Force Research Laboratory, and Varda will also provide more flight tests of C-PICA, helping to fully mature this technology relevant for future Mars missions and more.
NASA’s thermal protection experts can work with any space company on tackling the complex challenges of re-entry. Current collaborations include two companies targeting flights in the coming year.
A heat shield made by NASA is visible on the blunt, upward-facing side of a space capsule after its landing in the Utah desert. Varda Space Industries returned to Earth the first product processed on its in-space manufacturing platform on Feb. 21, 2024.Varda Space Industries/John Kraus The first flight of Inversion Space of Torrance, California, will take place in 2024 with the goal of using space to transport cargo. Inversion’s vehicle will re-enter the atmosphere using a C-PICA heat shield and a backshell, which protects the “downstream” end of the vehicle, made of another material developed at Ames: silicone-infused refractory ceramic ablator (SIRCA).
Later, NASA will support the first private mission to Venus with Rocket Lab. The spacecraft will use NASA’s Heatshield for Extreme Entry Environment Technology, developed at Ames, and a SIRCA backshell.
These and other projects NASA is enabling are born of 21st-century innovation, yet Hash sees similarities with the formation of commercial airlines in the 1920s and 30s.
As the Smithsonian’s National Postal Museum explains, when Congress passed the Air Mail Act in 1925, it allowed the U.S. Postal Service to transport mail using commercial air carriers. Because companies could not rely on paying passengers in the early years to survive, this government participation encouraged and enabled the development of commercial aviation. NASA’s predecessor, the National Advisory Committee for Aeronautics, had the important role of advancing technologies to enable this new market.
“We need to do the same thing they did for the airways, only for the spaceways,” said Hash. “That’s our job, now. It’s the perfect role for government, and it will increase economic prosperity for our country.”
For news media:
Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom.
Share
Details
Last Updated Mar 07, 2024 Related Terms
General Ames Research Center Commercial Space Commercial Space Programs Flight Opportunities Program Langley Research Center NASA Centers & Facilities NASA Directorates Space Technology Mission Directorate The Future of Commercial Space View the full article
-
By NASA
3 Min Read Mighty MURI brings the heat to test new longwave infrared radiometer
– Credits:
Leonardo Diagnostic/Retrieval Systems PROJECT
Multiband Uncooled Radiometer Instrument (MURI)
SNAPSHOT
NASA’s new Multiband Uncooled Radiometer Instrument (MURI) features a novel bolometer that detects infrared radiation without a cryogenic cooler, greatly reducing the cost and complexity of dispatching infrared radiometers into low-Earth orbit.
First-light data from NASA’s new Multiband Uncooled Radiometer Instrument (MURI) shows its novel, uncooled microbolometer is operational, setting the stage for future space missions dedicated to observing Earth’s surface temperature with a cost-effective instrument.
MURI, which was launched into low-Earth orbit in January 2023, is not NASA’s first space-based infrared radiometer, but it is one of NASA’s smallest. MURI flies through space at roughly seven kilometers per second as a hosted payload on Loft Orbital’s YAM5 platform.
During its technology validation mission, MURI will demonstrate a state-of-the-art microbolometer thermal imager that functions without a cryogenic cooler. This unique technology could become the foundation of future science missions dedicated to observing phenomena like volcanic activity.
Bolometers detect infrared radiation in the form of heat and do not require cryogenic operation. These components are extremely sensitive to changes in temperature.
Traditional space-based thermal sensors rely on bulky cryogenic coolers to remain at a constant temperature of about -300 degrees Fahrenheit. Cryogenic coolers add a lot of mass to space instruments. For example, the Moderate Resolution Imaging Spectroradiometer (MODIS), a space-based infrared radiometer serving aboard NASA’s Aqua and Terra satellites, weighs more than 500 pounds.
By contrast, MURI only weighs only about 12 pounds. While its microbolometer still needs to be held at a constant temperature to maintain accuracy in space, that temperature can be room temperature.
In airborne and laboratory tests, MURI achieved an absolute radiometric accuracy of around 1%, which is considered world-class for longwave infrared radiometers of any size, and first-light data suggests the instrument performs just as well within the rigors of space.
As depicted in this image, MURI underwent flight testing over the California coast in 2022, prior to its launch in into low-Earth orbit in January 2023. Weighing just 12 pounds, MURI will be capable of gathering infrared data with high precision. Credit: Leonardo Diagnostic/Retrieval Systems MURI’s initial observations suggest the instrument can measure the Earth surface temperature at a sensitivity as low as 123 millikelvin, which is comparable to existing Landsat instruments.
Creating an instrument so accurate and yet so compact required some innovative engineering. Philip Ely, Senior Director of Engineering at Leonardo Diagnostic/Retrieval Systems (DRS) and Principal Investigator for MURI, was especially concerned with image smear, a common issue with space-based remote sensors that collect high-resolution data.
“Our approach to solving this problem was to mount the bolometer focal plane array on a piezo stage, and then move the stage at the same velocity as the image to effectively stabilize the image on the focal plane array,” said Ely.
Through its Earth Science Technology Office, NASA worked with Leonardo DRS to transform MURI from an airborne instrument prototype to a spaceborne instrument in just 18 months.
Partnering with private companies to develop and demonstrate space-based instruments helps NASA reduce the amount of time and resources necessary to produce cutting-edge science.
Ely and his team presented a more detailed report describing MURI’s initial test results at the 2023 International Geoscience and Remote Sensing Symposium (IGARSS) conference in Pasadena, CA.
PROJECT LEAD
Philip Ely, Director of Engineering, Leonardo DRS
SPONSORING ORGANIZATION
Earth Science Division’s In-Space Validation of Earth Science Technologies (InVEST) Program; ESD’s Instrument Incubation Program (IIP)
Share
Details
Last Updated Dec 19, 2023 Related Terms
Earth Science Science-enabling Technology Technology Highlights View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.