Members Can Post Anonymously On This Site
Earth to Gateway: Electric Field Tests Enhance Lunar Communication
-
Similar Topics
-
By Space Force
U.S. Space Force Col. Nick Hague returned to Earth following a six-month mission aboard the International Space Station, March 18, 2025.
View the full article
-
By NASA
This compressed, resolution-limited gif shows the view of lunar sunset from one of the six Stereo Cameras for Lunar-Plume Surface Studies (SCALPSS) 1.1 cameras on Firefly’s Blue Ghost lander, which operated on the Moon’s surface for a little more than 14 days and stopped, as anticipated, a few hours into lunar night. The bright, swirly light moving across the surface on the top right of the image is sunlight reflecting off the lander. Images taken by SCALPSS 1.1 during Blue Ghost’s descent and landing, as well as images from the surface during the long lunar day, will help researchers better understand the effects of a lander’s engine plumes on the lunar soil, or regolith. The instrument collected almost 9000 images and returned 10 GB of data. This data is important as trips to the Moon increase and the number of payloads touching down in proximity to one another grows. The SCALPSS 1.1 project is funded by the Space Technology Mission Directorate’s Game Changing Development program. SCALPSS was developed at NASA’s Langley Research Center in Hampton, Virginia, with support from Marshall Space Flight Center in Huntsville, Alabama.NASA/Olivia TyrrellView the full article
-
By NASA
NASA astronauts Nick Hague, Suni Williams, Butch Wilmore, and Roscosmos cosmonaut Aleksandr Gorbunov land in a SpaceX Dragon spacecraft in the water off the coast of Tallahassee, Florida on March 18, 2025. Hague, Gorbunov, Williams, and Wilmore returned from a long-duration science expedition aboard the International Space Station. Credit: NASA/Keegan Barber NASA’s SpaceX Crew-9 completed the agency’s ninth commercial crew rotation mission to the International Space Station on Tuesday, splashing down safely in a SpaceX Dragon spacecraft off the coast of Tallahassee, Florida, in the Gulf of America.
NASA astronauts Nick Hague, Suni Williams, and Butch Wilmore, and Roscosmos cosmonaut Aleksandr Gorbunov, returned to Earth at 5:57 p.m. EDT. Teams aboard SpaceX recovery vessels retrieved the spacecraft and its crew. After returning to shore, the crew will fly to NASA’s Johnson Space Center in Houston and reunite with their families.
“We are thrilled to have Suni, Butch, Nick, and Aleksandr home after their months-long mission conducting vital science, technology demonstrations, and maintenance aboard the International Space Station,” said NASA acting Administrator Janet Petro. “Per President Trump’s direction, NASA and SpaceX worked diligently to pull the schedule a month earlier. This international crew and our teams on the ground embraced the Trump Administration’s challenge of an updated, and somewhat unique, mission plan, to bring our crew home. Through preparation, ingenuity, and dedication, we achieve great things together for the benefit of humanity, pushing the boundaries of what is possible from low Earth orbit to the Moon and Mars.”
Hague and Gorbunov lifted off at 1:17 p.m. Sept. 28, 2024, on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. The next day, they docked to the forward-facing port of the station’s Harmony module. Williams and Wilmore launched aboard Boeing’s Starliner spacecraft and United Launch Alliance Atlas V rocket on June 5, 2024, from Space Launch Complex 41 as part of the agency’s Boeing Crew Flight Test. The duo arrived at the space station on June 6. In August, NASA announced the uncrewed return of Starliner to Earth and integrated Wilmore and Williams as part of the space station’s Expedition 71/72 for a return on Crew-9. The crew of four undocked at 1:05 a.m. Tuesday to begin the trip home.
Williams and Wilmore traveled 121,347,491 miles during their mission, spent 286 days in space, and completed 4,576 orbits around Earth. Hague and Gorbunov traveled 72,553,920 miles during their mission, spent 171 days in space, and completed 2,736 orbits around Earth. The Crew-9 mission was the first spaceflight for Gorbunov. Hague has logged 374 days in space over his two missions, Williams has logged 608 days in space over her three flights, and Wilmore has logged 464 days in space over his three flights.
Throughout its mission, Crew-9 contributed to a host of science and maintenance activities and technology demonstrations. Williams conducted two spacewalks, joined by Wilmore for one and Hague for another, removing a radio frequency group antenna assembly from the station’s truss, collecting samples from the station’s external surface for analysis, installing patches to cover damaged areas of light filters on an X-ray telescope, and more. Williams now holds the record for total spacewalking time by a female astronaut, with 62 hours and 6 minutes outside of station, and is fourth on the all-time spacewalk duration list.
The American crew members conducted more than 150 unique scientific experiments and technology demonstrations between them, with over 900 hours of research. This research included investigations on plant growth and quality, as well as the potential of stem cell technology to address blood diseases, autoimmune disorders, and cancers. They also tested lighting systems to help astronauts maintain circadian rhythms, loaded the first wooden satellite for deployment, and took samples from the space station’s exterior to study whether microorganisms can survive in space.
The Crew-9 mission was the fourth flight of the Dragon spacecraft named Freedom. It also previously supported NASA’s SpaceX Crew-4, Axiom Mission 2, and Axiom Mission 3. The spacecraft will return to Florida for inspection and processing at SpaceX’s refurbishing facility at Cape Canaveral Space Force Station, where teams will inspect the Dragon, analyze data on its performance, and begin processing for its next flight.
The Crew-9 flight is part of NASA’s Commercial Crew Program, and its return to Earth follows on the heels of NASA’s SpaceX Crew-10 launch, which docked to the station on March 16, beginning another long-duration science expedition.
The goal of NASA’s Commercial Crew Program is safe, reliable, and cost-effective transportation to and from the space station and low Earth orbit. The program provides additional research time and has increased opportunities for discovery aboard humanity’s microgravity testbed for exploration, including helping NASA prepare for human exploration of the Moon and Mars.
Learn more about NASA’s Commercial Crew Program at:
https://www.nasa.gov/commercialcrew
-end-
Amber Jacobson / Joshua Finch
Headquarters, Washington
202-358-1100
amber.c.jacobson@nasa.gov / joshua.a.finch@nasa.gov
Kenna Pell / Sandra Jones
Johnson Space Center, Houston
281-483-5111
kenna.m.pell@nasa.gov / sandra.p.jones@nasa.gov
Steve Siceloff / Stephanie Plucinsky
Kennedy Space Center, Florida
321-867-2468
steven.p.siceloff@nasa.gov / stephanie.n.plucinsky@nasa.gov
Share
Details
Last Updated Mar 18, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
Humans in Space Expedition 72 International Space Station (ISS) ISS Research Space Operations Mission Directorate View the full article
-
By NASA
A SpaceX Falcon 9 rocket lifts off from Vandenberg Space Force Base, carrying NASA’s EZIE spacecraft into orbit. SpaceX Under the nighttime California sky, NASA’s EZIE (Electrojet Zeeman Imaging Explorer) mission launched aboard a SpaceX Falcon 9 rocket at 11:43 p.m. PDT on March 14.
Taking off from Vandenberg Space Force Base near Santa Barbara, the EZIE mission’s trio of small satellites will fly in a pearls-on-a-string configuration approximately 260 to 370 miles above Earth’s surface to map the auroral electrojets, powerful electric currents that flow through our upper atmosphere in the polar regions where auroras glow in the sky.
At approximately 2 a.m. PDT on March 15, the EZIE satellites were successfully deployed. Within the next 10 days, the spacecraft will send signals to verify they are in good health and ready to embark on their 18-month mission.
“NASA has leaned into small missions that can provide compelling science while accepting more risk. EZIE represents excellent science being executed by an excellent team, and it is delivering exactly what NASA is looking for,” said Jared Leisner, program executive for EZIE at NASA Headquarters in Washington.
The electrojets — and their visible counterparts, theauroras — are generated duringsolar storms when tremendous amounts of energy get transferred into Earth’s upper atmosphere from the solar wind. Each of the EZIE spacecraft will map the electrojets, advancing our understanding of the physics of how Earth interacts with its surrounding space. This understanding will apply not only to our own planet but also to any magnetized planet in our solar system and beyond. The mission will also help scientists create models for predicting space weather to mitigate its disruptive impacts on our society.
“It is truly incredible to see our spacecraft flying and making critical measurements, marking the start of an exciting new chapter for the EZIE mission,” said Nelli Mosavi-Hoyer, project manager for EZIE at the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland. “I am very proud of the dedication and hard work of our team. This achievement is a testament to the team’s perseverance and expertise, and I look forward to the valuable insights EZIE will bring to our understanding of Earth’s electrojets and space weather.”
Instead of using propulsion to control their polar orbit, the spacecraft will actively use drag experienced while flying through the upper atmosphere to individually tune their spacing. Each successive spacecraft will fly over the same region 2 to 10 minutes after the former.
“Missions have studied these currents before, but typically either at the very large or very small scales,” said Larry Kepko, EZIE mission scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “EZIE will help us understand how these currents form and evolve, at scales we’ve never probed.”
The mission team is also working to distribute magnetometer kits called EZIE-Mag, which are available to teachers, students, and science enthusiasts who want to take their own measurements of the Earth-space electrical current system. EZIE-Mag data will be combined with EZIE measurements made from space to assemble a clear picture of this vast electrical current circuit.
The EZIE mission is funded by the Heliophysics Division within NASA’s Science Mission Directorate and is managed by the Explorers Program Office at NASA Goddard. The Johns Hopkins Applied Physics Laboratory leads the mission for NASA. Blue Canyon Technologies in Boulder, Colorado, built the CubeSats, and NASA’s Jet Propulsion Laboratory in Southern California built the Microwave Electrojet Magnetogram, which will map the electrojets, for each of the three satellites.
For the latest mission updates, follow NASA’s EZIE blog.
By Brett Molina
Johns Hopkins Applied Physics Laboratory
Share
Details
Last Updated Mar 15, 2025 Editor Vanessa Thomas Contact Sarah Frazier sarah.frazier@nasa.gov Location Goddard Space Flight Center Related Terms
Heliophysics Auroras CubeSats EZIE (Electrojet Zeeman Imaging Explorer) Goddard Space Flight Center Heliophysics Division Missions Small Satellite Missions The Sun Explore More
5 min read NASA’s EZIE Launching to Study Magnetic Fingerprints of Earth’s Aurora
Article
3 weeks ago
5 min read NASA Rockets to Fly Through Flickering, Vanishing Auroras
Article
2 months ago
5 min read How NASA Tracked the Most Intense Solar Storm in Decades
Article
10 months ago
View the full article
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.