Members Can Post Anonymously On This Site
Week in images: 22-26 July 2024
-
Similar Topics
-
By European Space Agency
Week in images: 02-06 September 2024
Discover our week through the lens
View the full article
-
By European Space Agency
The ESA/JAXA BepiColombo mission has successfully completed its fourth of six gravity assist flybys at Mercury, capturing images of two special impact craters as it uses the little planet’s gravity to steer itself on course to enter orbit around Mercury in November 2026.
The closest approach took place at 23:48 CEST (21:48 UTC) on 4 September 2024, with BepiColombo coming down to around 165 km above the planet’s surface. For the first time, the spacecraft had a clear view of Mercury’s south pole.
View the full article
-
By NASA
23 Min Read The Marshall Star for September 4, 2024
Rocket Hardware for Future Artemis Flights Moved to Barge for Delivery to Kennedy
NASA is making strides with the Artemis campaign as key components for the SLS (Space Launch System) rocket continue to make their way to NASA’s Kennedy Space Center. Teams with NASA and Boeing loaded the core stage boat-tail for Artemis III and the core stage engine section for Artemis IV onto the agency’s Pegasus barge at Michoud Assembly Facility on Aug. 28.
The core stage engine section of the SLS (Space Launch System) rocket for Artemis IV is loaded onto the agency’s Pegasus barge at Michoud Assembly Facility on Aug. 28. The core stage hardware will be moved Kennedy’s Space Systems Processing Facility for outfitting.NASA/Justin Robert The core stage hardware joins the launch vehicle stage adapter for Artemis II, which was moved onto the barge at NASA’s Marshall Space Flight Center on Aug. 21. Pegasus will ferry the multi-mission rocket hardware more than 900 miles to the Space Coast of Florida. Teams with the NASA’s Exploration Ground Systems Program will prepare the launch vehicle stage adapter for Artemis II stacking operations inside the Vehicle Assembly Building, while the core stage hardware will be moved to Kennedy’s Space Systems Processing Facility for outfitting. Beginning with Artemis III, core stages will undergo final assembly at Kennedy.
The launch vehicle stage adapter is essential for connecting the rocket’s core stage to the upper stage. It also shields sensitive avionics and electrical components in the rocket’s interim cryogenic propulsion stage from the intense vibrations and noise of launch.
The boat-tail and engine section are crucial for the rocket’s functionality. The boat-tail extends from the engine section, fitting snugly to protect the rocket’s engines during launch. The engine section itself houses more than 500 sensors, 18 miles of cables, and key systems for fuel management and engine control, all packed into the bottom of the towering 212-foot core stage.
NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.
Marshall manages the SLS Program and Michoud.
› Back to Top
25 Years Strong: NASA’s Student Launch Competition Accepting 2025 Proposals
By Wayne Smith
NASA’s Student Launch competition kicks off its 25th year with the release of the 2025 handbook, detailing how teams can submit proposals by Sept. 11 for the event scheduled next spring near NASA’s Marshall Space Flight Center.
Student Launch is an annual competition challenging middle school, high school, and college students to design, build, test, and launch a high-powered amateur rocket with a scientific or engineering payload. After a team is selected, they must meet documentation milestones and undergo detailed reviews throughout the school year.
NASA’s Student Launch, a STEM competition, officially kicks off its 25th anniversary with the 2025 handbook.NASA Each year, NASA updates the university payload challenge to reflect current scientific and exploration missions. For the 2025 season, the payload challenge will again take inspiration from the Artemis missions, which seek to land the first woman and first person of color on the Moon.
As Student Launch celebrates its 25th anniversary, the payload challenge will include “reports” from STEMnauts, non-living objects representing astronauts. The 2024 challenge tasked teams with safely deploying a lander mid-air for a group of four STEMnauts using metrics to support a survivable landing. The lander had to be deployed without a parachute and had a minimum weight limit of five pounds.
“This year, we’re shifting the focus to communications for the payload challenge,” said John Eckhart, technical coordinator for Student Launch at Marshall. “The STEMnaut ‘crew’ must relay real-time data to the student team’s mission control. This helps connect Student Launch with the Artemis missions when NASA lands astronauts on the Moon.”
Thousands of students participated in the 2024 Student Launch competition – making up 70 teams representing 24 states and Puerto Rico. Teams launched their rockets to an altitude between 4,000 and 6,000 feet, while attempting to make a successful landing and executing the payload mission. The University of Notre Dame was the overall winner of the 2024 event, which culminated with a launch day open to the public.
Student Launch began in 2000 when former Marshall Director Art Stephenson started a student rocket competition at the center. It started with just two universities in Huntsville competing – Alabama A&M University and the University of Alabama in Huntsville – but has continued to soar. Since its inception, thousands of students have participated in the agency’s STEM competition, with many going on to a career with NASA.
“This remarkable journey, spanning a quarter of a century, has been a testament to the dedication, ingenuity, and passion of countless students, educators, and mentors who have contributed to the program’s success,” Eckhart said. “NASA Student Launch has been at the forefront of experiential education, providing students from middle school through university with unparalleled opportunities to engage in real-world engineering and scientific research. The program’s core mission – to inspire and cultivate the next generation of aerospace professionals and space explorers – has not only been met but exceeded in ways we could have only dreamed of.”
To encourage students to pursue degrees and careers in STEM (science, technology, engineering, and math), Marshall’s Office of STEM Engagement hosts Student Launch, providing them with real-world experiences. Student Launch is one of NASA’s nine Artemis Student Challenges – a variety of activities that expose students to the knowledge and technology required to achieve the goals of Artemis.
In addition to the NASA Office of STEM Engagement’s Next Generation STEM project, NASA Space Operations Mission Directorate, Northrup Grumman, National Space Club Huntsville, American Institute of Aeronautics and Astronautics, National Association of Rocketry, Relativity Space and Bastion Technologies provide funding and leadership for the competition.
“These bright students rise to a nine-month challenge for Student Launch that tests their skills in engineering, design, and teamwork,” said Kevin McGhaw, director of NASA’s Office of STEM Engagement Southeast Region. “They are the Artemis Generation, the future scientists, engineers, and innovators who will lead us into the future of space exploration.”
Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications.
› Back to Top
NASA Expands Human Exploration Rover Challenge to Middle Schools
By Wayne Smith
Following a 2024 competition that garnered international attention, NASA is expanding its Human Exploration Rover Challenge (HERC) to include a remote control division and inviting middle school students to participate.
The 31st annual competition is scheduled for April 11-12, 2025, at the U.S. Space & Rocket Center, near NASA’s Marshall Space Flight Center. HERC is managed by NASA’s Southeast Regional Office of STEM Engagement at Marshall. The HERC 2025 Handbook has been released, with guidelines for the new remote control (RC) division – ROVR (Remote-Operated Vehicular Research) – and detailing updates for the human-powered division.
The cover of the HERC 2025 handbook, which is now available online.NASA “Our RC division significantly lowers the barrier to entry for schools who don’t have access to manufacturing facilities, have less funding, or who are motivated to compete but don’t have the technical mentorship required to design and manufacture a safe human-powered rover,” said Chris Joren, HERC technical coordinator. “We are also opening up HERC to middle school students for the first time. The RC division is inherently safer and less physically intensive, so we invite middle school teams and organizations to submit a proposal to be a part of HERC 2025.”
Another change for 2025 is the removal of task sites on the course for the human-powered rover division, allowing teams to focus on their rover’s design. Recognized as NASA’s leading international student challenge, the 2025 challenge aims to put competitors in the mindset of the Artemis campaign as they pitch an engineering design for a lunar terrain vehicle – they are astronauts piloting a vehicle, exploring the lunar surface while overcoming various obstacles.
“The HERC team wanted to put together a challenge that allows students to gain 21st century skills, workforce readiness skills, and skills that are transferable,” said Vemitra Alexander, HERC activity lead. “The students have opportunities to learn and apply the engineering design process model, gain public speaking skills, participate in community outreach, and learn the art of collaborating with their peers. I am very excited about HERC’s growth and the impact it has on the students we serve nationally and internationally.”
Students interested in designing, developing, building, and testing rovers for Moon and Mars exploration are invited to submit their proposals to NASA through Sept. 19.
More than 1,000 students with 72 teams from around the world participated in the 2024 challenge as HERC celebrated its 30th anniversary as a NASA competition. Participating teams represented 42 colleges and universities and 30 high schools from 24 states, the District of Columbia, Puerto Rico, and 13 other nations from around the world.
“We saw a massive jump in recognition, not only from within the agency as NASA Chief Technologist A.C. Charania attended the event, but with several of our international teams meeting dignitaries and ambassadors from their home countries to cheer them on,” Joren said. “The most impressive thing will always be the dedication and resilience of the students and their mentors. No matter what gets thrown at these students, they still roll up to the start line singing songs and waving flags.”
HERC is one of NASA’s eight Artemis Student Challenges reflecting the goals of the Artemis campaign, which seeks to land the first woman and first person of color on the Moon while establishing a long-term presence for science and exploration. NASA uses such challenges to encourage students to pursue degrees and careers in the STEM fields of science, technology, engineering, and mathematics.
Since its inception in 1994, more than 15,000 students have participated in HERC – with many former students now working at NASA, or within the aerospace industry.
Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications.
› Back to Top
New NASA Sonifications Listen to the Universe’s Past
A quarter of a century ago, NASA released the “first light” images from the agency’s Chandra X-ray Observatory. This introduction to the world of Chandra’s high-resolution X-ray imaging capabilities included an unprecedented view of Cassiopeia A, the remains of an exploded star located about 11,000 light-years from Earth. Over the years, Chandra’s views of Cassiopeia A have become some of the telescope’s best-known images.
To mark the anniversary of this milestone, new sonifications of three images – including Cassiopeia A (Cas A) – are being released. Sonification is a process that translates astronomical data into sound, similar to how digital data are more routinely turned into images. This translation process preserves the science of the data from its original digital state but provides an alternative pathway to experiencing the data.
Sonifications of three images have been released to mark the 25th anniversary of Chandra’s “First Light” image. For Cassiopeia A, which was one of the first objects observed by Chandra, X-ray data from Chandra and infrared data from Webb have been translated into sounds, along with some Hubble data. The second image in the sonification trio, 30 Doradus, also contains Chandra and Webb data. NGC 6872 contains data from Chandra as well as an optical image from Hubble. Each of these datasets have been mapped to notes and sounds based on properties observed by these telescopes.NASA/CXC/SAO/K.Arcand, SYSTEM Sounds (M. Russo, A. Santaguida) This sonification of Cas A features data from Chandra as well as NASA’s James Webb, Hubble, and retired Spitzer space telescopes. The scan starts at the neutron star at the center of the remnant, marked by a triangle sound, and moves outward. Astronomers first saw this neutron star when Chandra’s inaugural observations were released 25 years ago this week. Chandra’s X-rays also reveal debris from the exploded star that is expanding outward into space. The brighter parts of the image are conveyed through louder volume and higher pitched sounds. X-ray data from Chandra are mapped to modified piano sounds, while infrared data from Webb and Spitzer, which detect warmed dust embedded in the hot gas, have been assigned to various string and brass instruments. Stars that Hubble detects are played with crotales, or small cymbals.
Another new sonification features the spectacular cosmic vista of 30 Doradus, one of the largest and brightest regions of star formation close to the Milky Way. This sonification again combines X-rays from Chandra with infrared data from Webb. As the scan moves from left to right across the image, the volume heard again corresponds to the brightness seen. Light toward the top of the image is mapped to higher pitched notes. X-rays from Chandra, which reveal gas that has been superheated by shock waves generated by the winds from massive stars, are heard as airy synthesizer sounds. Meanwhile, Webb’s infrared data show cooler gas that provides the raw ingredients for future stars. These data are mapped to a range of sounds including soft, low musical pitches (red regions), a wind-like sound (white regions), piano-like synthesizer notes indicating very bright stars, and a rain-stick sound for stars in a central cluster.
The final member of this new sonification triumvirate is NGC 6872, a large spiral galaxy that has two elongated arms stretching to the upper right and lower left, which is seen in an optical light view from Hubble. Just to the upper left of NGC 6872 appears another smaller spiral galaxy. These two galaxies, each of which likely has a supermassive black hole at the center, are being drawn toward one another. As the scan sweeps clockwise from 12 o’clock, the brightness controls the volume and light farther from the center of the image is mapped to higher-pitched notes. Chandra’s X-rays, represented in sound by a wind-like sound, show multimillion-degree gas that permeates the galaxies. Compact X-ray sources from background galaxies create bird-like chirps. In the Hubble data, the core of NGC 6872 is heard as a dark low drone, and the blue spiral arms (indicating active star formation) are audible as brighter, more highly pitched tones. The background galaxies are played as a soft pluck sound while the bright foreground star is accompanied by a crash cymbal.
More information about the NASA sonification project through Chandra, which is made in partnership with NASA’s Universe of Learning, can be found here. The collaboration was driven by visualization scientist Kimberly Arcand (CXC), astrophysicist Matt Russo, and musician Andrew Santaguida, (both of the SYSTEM Sounds project), along with consultant Christine Malec.
NASA’s Universe of Learning materials are based upon work supported by NASA under cooperative agreement award number NNX16AC65A to the Space Telescope Science Institute, working in partnership with Caltech/IPAC, Center for Astrophysics | Harvard & Smithsonian, and the Jet Propulsion Laboratory.
Chandra, managed for NASA by the agency’s Marshall Space Flight Center in partnership with the CXC, is one of NASA’s Great Observatories, along with the Hubble Space Telescope and the now-retired Spitzer Space Telescope and Compton Gamma Ray Observatory. It was first proposed to NASA in 1976 by Riccardo Giacconi, recipient of the 2002 Nobel Prize for Physics based on his contributions to X-ray astronomy, and Harvey Tananbaum, who would later become the first director of the Chandra X-ray Center. Chandra was named in honor of the late Nobel laureate Subrahmanyan Chandrasekhar, who earned the Nobel Prize in Physics in 1983 for his work explaining the structure and evolution of stars.
› Back to Top
Europa Clipper Gets Set of Super-Size Solar Arrays
NASA’s Europa Clipper spacecraft recently got outfitted with a set of enormous solar arrays at the agency’s Kennedy Space Center. Each measuring about 46½ feet long and about 13½ feet high, the arrays are the biggest NASA has ever developed for a planetary mission. They must be large so they can soak up as much sunlight as possible during the spacecraft’s investigation of Jupiter’s moon Europa, which is five times farther from the Sun than Earth is.
NASA’s Europa Clipper is seen Aug. 21 at the agency’s Kennedy Space Center. Engineers and technicians deployed and tested the giant solar arrays to be sure they will operate in flight.NASA/Frank Michaux The arrays have been folded up and secured against the spacecraft’s main body for launch, but when they’re deployed in space, Europa Clipper will span more than 100 feet – a few feet longer than a professional basketball court. The “wings,” as the engineers call them, are so big that they could only be opened one at a time in the clean room of Kennedy’s Payload Hazardous Servicing Facility, where teams are readying the spacecraft for its launch period, which opens Oct. 10.
Meanwhile, engineers continue to assess tests conducted on the radiation hardiness of transistors on the spacecraft. Longevity is key, because the spacecraft will journey more than five years to arrive at the Jupiter system in 2030. As it orbits the gas giant, the probe will fly by Europa multiple times, using a suite of science instruments to find out whether the ocean underneath its ice shell has conditions that could support life.
Powering those flybys in a region of the solar system that receives only 3% to 4% of the sunlight Earth gets, each solar array is composed of five panels. Designed and built at the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, and Airbus in Leiden, Netherlands, they are much more sensitive than the type of solar arrays used on homes, and the highly efficient spacecraft will make the most of the power they generate.
NASA’s Europa Clipper is seen in a clean room at Kennedy Space Center after engineers and technicians tested and stowed the spacecraft’s giant solar arrays.NASA/Frank Michaux At Jupiter, Europa Clipper’s arrays will together provide roughly 700 watts of electricity, about what a small microwave oven or a coffee maker needs to operate. On the spacecraft, batteries will store the power to run all of the electronics, a full payload of science instruments, communications equipment, the computer, and an entire propulsion system that includes 24 engines.
While doing all of that, the arrays must operate in extreme cold. The hardware’s temperature will plunge to minus 400 degrees Fahrenheit when in Jupiter’s shadow. To ensure that the panels can operate in those extremes, engineers tested them in a specialized cryogenic chamber at Liège Space Center in Belgium.
“The spacecraft is cozy. It has heaters and an active thermal loop, which keep it in a much more normal temperature range,” said APL’s Taejoo Lee, the solar array product delivery manager. “But the solar arrays are exposed to the vacuum of space without any heaters. They’re completely passive, so whatever the environment is, those are the temperatures they get.”
About 90 minutes after launch, the arrays will unfurl from their folded position over the course of about 40 minutes. About two weeks later, six antennas affixed to the arrays will also deploy to their full size. The antennas belong to the radar instrument, which will search for water within and beneath the moon’s thick ice shell, and they are enormous, unfolding to a length of 57.7 feet, perpendicular to the arrays.
“At the beginning of the project, we really thought it would be nearly impossible to develop a solar array strong enough to hold these gigantic antennas,” Lee said. “It was difficult, but the team brought a lot of creativity to the challenge, and we figured it out.”
Europa Clipper’s three main science objectives are to determine the thickness of the moon’s icy shell and its interactions with the ocean below, to investigate its composition, and to characterize its geology. The mission’s detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet.
Managed by Caltech in Pasadena, California, NASA’s Jet Propulsion Laboratory leads the development of the Europa Clipper mission in partnership with APL for NASA’s Science Mission Directorate. APL designed the main spacecraft body in collaboration with JPL and NASA’s Goddard Space Flight Center. The Planetary Missions Program Office at NASA’s Marshall Space Flight Center executes program management of the Europa Clipper mission.
NASA’s Launch Services Program, based at Kennedy, manages the launch service for the Europa Clipper spacecraft, which will launch on a SpaceX Falcon Heavy rocket from Launch Complex 39A at Kennedy.
› Back to Top
Work is Underway on NASA’s Next-Generation Asteroid Hunter
NASA’s new asteroid-hunting spacecraft is taking shape at NASA’s Jet Propulsion Laboratory. Called NEO Surveyor (Near-Earth Object Surveyor), this cutting-edge infrared space telescope will seek out the hardest-to-find asteroids and comets that might pose a hazard to our planet. In fact, it is the agency’s first space telescope designed specifically for planetary defense.
Targeting launch in late 2027, the spacecraft will travel a million miles to a region of gravitational stability – called the L1 Lagrange point – between Earth and the Sun. From there, its large sunshade will block the glare and heat of sunlight, allowing the mission to discover and track near-Earth objects as they approach Earth from the direction of the Sun, which is difficult for other observatories to do. The space telescope also may reveal asteroids called Earth Trojans, which lead and trail our planet’s orbit and are difficult to see from the ground or from Earth orbit.
A mirror that was later installed inside NASA’s Near-Earth Object Surveyor shows a reflection of principal optical engineer Brian Monacelli during an inspection of the mirror’s surface at the agency’s Jet Propulsion Laboratory on July 17.NASA/JPL-Caltech NEO Surveyor relies on cutting-edge detectors that observe two bands of infrared light, which is invisible to the human eye. Near-Earth objects, no matter how dark, glow brightly in infrared as the Sun heats them. Because of this, the telescope will be able to find dark asteroids and comets, which don’t reflect much visible light. It also will measure those objects, a challenging task for visible-light telescopes that have a hard time distinguishing between small, highly reflective objects and large, dark ones.
“NEO Surveyor is optimized to help us to do one specific thing: enable humanity to find the most hazardous asteroids and comets far enough in advance so we can do something about them,” said Amy Mainzer, survey director for NEO Surveyor and a professor at the University of California, Los Angeles. “We aim to build a spacecraft that can find, track, and characterize the objects with the greatest chance of hitting Earth. In the process, we will learn a lot about their origins and evolution.”
The spacecraft’s only instrument is its telescope. About the size of a washer-and-dryer set, the telescope’s blocky aluminum body, called the optical bench, was built in a JPL clean room. Known as a three-mirror anastigmat telescope, it will rely on curved mirrors to focus light onto its infrared detectors in such a way that minimizes optical aberrations.
“We have been carefully managing the fabrication of the spacecraft’s telescope mirrors, all of which were received in the JPL clean room by July,” said Brian Monacelli, principal optical engineer at JPL. “Its mirrors were shaped and polished from solid aluminum using a diamond-turning machine. Each exceeds the mission’s performance requirements.”
Monacelli inspected the mirror surfaces for debris and damage, then JPL’s team of optomechanical technicians and engineers attached the mirrors to the telescope’s optical bench in August. Next, they will measure the telescope’s performance and align its mirrors.
Complementing the mirror assembly are the telescope’s mercury-cadmium-telluride detectors, which are similar to the detectors used by NASA’s recently retired NEOWISE (short for Near-Earth Object Wide-field Infrared Survey Explorer) mission. An advantage of these detectors is that they don’t necessarily require cryogenic coolers or cryogens to lower their operational temperatures in order to detect infrared wavelengths. Cryocoolers and cryogens can limit the lifespan of a spacecraft. NEO Surveyor will instead keep its cool by using its large sunshade to block sunlight from heating the telescope and by occupying an orbit beyond that of the Moon, minimizing heating from Earth.
A technician operates articulating equipment to rotate NEO Surveyor’s aluminum optical bench – part of the spacecraft’s telescope – in a clean room at NASA’s Jet Propulsion Laboratory.NASA/JPL-Caltech The telescope will eventually be installed inside the spacecraft’s instrument enclosure, which is being assembled in JPL’s historic High Bay 1 clean room where NASA missions such as Voyager, Cassini, and Perseverance were constructed. Fabricated from dark composite material that allows heat to escape, the enclosure will help keep the telescope cool and prevent its own heat from obscuring observations.
Once it is completed in coming weeks, the enclosure will be tested to make sure it can withstand the rigors of space exploration. Then it will be mounted on the back of the sunshade and atop the electronic systems that will power and control the spacecraft.
“The entire team has been working hard for a long time to get to this point, and we are excited to see the hardware coming together with contributions from our institutional and industrial collaborators from across the country,” said Tom Hoffman, NEO Surveyor’s project manager at JPL. “From the panels and cables for the instrument enclosure to the detectors and mirrors for the telescope — as well as components to build the spacecraft — hardware is being fabricated, delivered, and assembled to build this incredible observatory.”
Assembly of NEO Surveyor can be viewed 24 hours a day, seven days a week, via JPL’s live cam.
The NEO Surveyor mission marks a major step for NASA toward reaching its U.S. Congress-mandated goal to discover and characterize at least 90% of the near-Earth objects more than 460 feet across that come within 30 million miles of our planet’s orbit. Objects of this size can cause significant regional damage, or worse, should they impact the Earth.
The mission is tasked by NASA’s Planetary Science Division within the Science Mission Directorate; program oversight is provided by the Planetary Defense Coordination Office, which was established in 2016 to manage the agency’s ongoing efforts in planetary defense. NASA’s Planetary Missions Program Office at the agency’s Marshall Space Flight Center provides program management for NEO Surveyor.
The project is being developed by JPL and is led by survey director Amy Mainzer at UCLA. Established aerospace and engineering companies have been contracted to build the spacecraft and its instrumentation, including BAE Systems, Space Dynamics Laboratory, and Teledyne. The Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder will support operations, and IPAC-Caltech in Pasadena, California, is responsible for processing survey data and producing the mission’s data products. Caltech manages JPL for NASA.
› Back to Top
NASA Sets Coverage for Starliner Return to Earth
NASA will provide live coverage of the upcoming activities for Boeing’s Starliner spacecraft departure from the International Space Station and return to Earth. The uncrewed spacecraft will depart from the orbiting laboratory for a landing at White Sands Space Harbor in New Mexico.
Starliner is scheduled to autonomously undock from the space station at approximately 5:04 p.m. CDT Sept. 6, to begin the journey home, weather conditions permitting. NASA and Boeing are targeting approximately 11:03 p.m. Sept. 6 for the landing and conclusion of the flight test.
The American flag pictured inside the window of Boeing’s Starliner spacecraft at the International Space Station.Credit: NASA NASA’s live coverage of return and related activities will stream on NASA+, the NASA app, and the agency’s website. Learn how to stream NASA programming through a variety of platforms including social media.
NASA astronauts Butch Wilmore and Suni Williams launched aboard Boeing’s Starliner spacecraft on June 5 for its first crewed flight, arriving at the space station on June 6. As Starliner approached the orbiting laboratory, NASA and Boeing identified helium leaks and experienced issues with the spacecraft reaction control thrusters. For the safety of the astronauts, NASA announced on Aug. 24 that Starliner will return to Earth from the station without a crew. Wilmore and Williams will remain aboard the station and return home in February 2025 aboard the SpaceX Dragon spacecraft with two other crew members assigned to NASA’s SpaceX Crew-9 mission.
› Back to Top
View the full article
-
By NASA
7 Min Read Lagniappe for September 2024
Explore the September 2024 issue, highlighting NASA Stennis Silver Snoopy awards, center visits, and more! Explore Lagniappe for September 2024 featuring:
NASA Honors NASA Stennis Employees for Flight Safety Summer Interns Display NASA Stennis Work NASA’s Rocket Propulsion Test Program Office Visits NASA Stennis
Gator Speaks
NASA’s Stennis Space Center keeps writing new history, and the front office announcement in August delights this ‘ol Gator!
The news delights me because the south Mississippi NASA center will continue to be in good hands with Christine Powell serving as the new deputy director. And talk about perfect timing – announcement of the selection came just a few weeks before the celebration of Women’s Equality Day on Aug. 26.
Gator SpeaksNASA/Stennis In her new role, Powell now is responsible, along with NASA Stennis Director John Bailey, for coordinating all the rocket propulsion test capabilities onsite, along with managing the overall NASA center.
As the nation’s largest – and premier – propulsion test site, NASA Stennis supports test operations for both government and commercial aerospace companies. Powell’s depth of knowledge positions her perfectly for this new challenge.
Her record shows that she knows the ins-and-outs of NASA Stennis and is very-well versed on propulsion testing. Her career is also a testament to NASA developing its skilled workforce. Powell started as an intern at NASA Stennis in 1991. Following the internship, she worked as an instrumentation engineer and systems integration engineer before moving into leadership positions in 2004.
All in all, Powell illustrates perfectly the important role women play at NASA Stennis – in positions and roles all across the center. Women are a vital part of the NASA Stennis team, contributing to every area of the center’s work and mission.
NASA Stennis’ aim in the future is to operate as a multi-user propulsion testing enterprise that accelerates the development of aerospace systems and services by government and industry.
This Gator has witnessed many successful endeavors at NASA Stennis, and I am confident that Powell’s new role will have her adding value to this endeavor.
Just as the focus was on women’s equality last month, September provides a time to celebrate the hard work of all with Labor Day on the first Monday of the month. As we move forward, the newest deputy director’s journey at NASA Stennis proves that work is not merely a means to an end, but also a journey to realize one’s full potential.
Read More About Powell NASA Stennis Top News
NASA Honors NASA Stennis Employees for Flight Safety
NASA Stennis congratulates the 2024 Silver Snoopy Award recipients from NASA Stennis and the NASA Shared Services Center. NASA Stennis Director John Bailey welcomes employees and guests to the Silver Snoopy Award ceremony on Aug. 21 at NASA’s Stennis Space Center. NASA’s Space Flight Awareness Program recognizes outstanding job performances and contributions by civil servants and contract employees. It focuses on excellence in quality and safety in support of human spaceflight.NASA/Danny Nowlin NASA astronaut Reid Wiseman speaks to employees and guests before presenting the Silver Snoopy awards on Aug. 21 at NASA’s Stennis Space Center. The Silver Snoopy is the astronauts’ personal award and is presented to less than 1 percent of the total NASA workforce annually. Wiseman will be one of four astronauts flying around the Moon on Artemis II, the first crewed mission on NASA’s path toward long-term scientific lunar exploration. The 10-day flight will test NASA’s foundational human deep space exploration capabilities, the agency’s powerful SLS (Space Launch System) rocket, and the Orion spacecraft for the first time with astronauts. The RS-25 engines helping to power SLS were tested at NASA Stennis.NASA/Danny Nowlin The following employees received the Silver Snoopy award presented by NASA astronaut Reid Wiseman on Aug. 21 at NASA’s Stennis Space Center:
William Berry
NASA Stennis employee William Berry, a native of Diamondhead, Mississippi, is a metrology technician for Alutiiq Essential Services, LLC at NASA Stennis. The Picayune, Mississippi, resident received the honor for his dedication to duty and commitment to improving the operations of the center’s Measurement Standards and Calibration Laboratory. His contributions help ensure the laboratory achieves its fiscal goals of delivering customer equipment on time.
Allen Blow
NASA Stennis employee Allen Blow, a native of Yorktown, Virginia, is a principal engineer for Syncom Space Services at NASA Stennis. The New Orleans resident received the honor for providing engineering services to ensure the success of the SLS (Space Launch System) Exploration Upper Stage test project on the Thad Cochran Test Stand (B-2) and the RS-25 engine test project on the Fred Haise Test Stand.
Michael Brown
NASA Stennis employee Michael Brown, a native of Cerritos, California, is a quality engineer for Aerojet Rocketdyne, an L3Harris Technologies company, at NASA Stennis. The Slidell, Louisiana, resident received the honor for his commitment to test flight support, attention to detail, and unwavering passion for spaceflight.
Tessa Keating
NASA Stennis employee Tessa Keating, a native and resident of Carriere, Mississippi, received the honor for her outstanding contributions to the NASA Stennis Office of Communications and to NASA. She continually provides excellent work in telling the NASA story to diverse audiences, including influential leaders, equipping them with a broader knowledge of, and appreciation for, the center’s role in the agency.
Rhonda Lavigne
NASA Stennis employee Rhonda Lavigne, a native of Pass Christian, Mississippi, is a corrective action request manager for SaiTech at NASA Stennis. The Gulfport, Mississippi, resident received the honor for her dedication to the NASA Stennis Audit Program. Her support ensures all reviews are well planned, audit objectives are met, and compliance for continual improvement of programs impacting the NASA Stennis mission is promoted.
Stephen O’Neill
NASA Stennis employee Stephen O’Neill, a native and resident of Poplarville, Mississippi, is a NASA industrial hygienist in the Center Operations Directorate at NASA Stennis. O’Neill received the honor for his contributions in helping the site achieve critical engine and stage test project goals for NASA’s SLS (Space Launch System) rocket.
Benjamin Stevens
NASA Stennis employee Benjamin Stevens, a native of Lake Charles, Louisiana, is a NASA information technology specialist for the NASA Shared Services Center, located at NASA Stennis. The Picayune, Mississippi, resident received the honor for his expertise toward improving the integration and security posture of the NASA Shared Services Center’s information technology telecommunications and networking environment. His work enables shared services delivery to the agency’s engineers, scientists, researchers, and administrative professionals.
Glenn Varner
NASA Stennis employee Glenn Varner, a native and resident of Gulfport, Mississippi, is a NASA mechanical test engineer in the Engineering and Test Directorate at NASA Stennis. He received the honor for his performance and contributions to Thad Cochran Test Stand (B-2) operations for SLS (Space Launch System) core stage testing for Artemis I. Varner’s work helped improve facility performance and responsiveness, leading to successful testing of the SLS core stage.
Steven Wood
NASA Stennis employee Steven Wood, a native and resident of Picayune, Mississippi, is a NASA contract specialist for the NASA Shared Services Center, located at NASA Stennis. He received the honor for going above and beyond normal work assignments to accomplish several highly visible contract actions for NASA’s Early-Stage Innovation and Partnerships programs.
Thomas Wolfe
NASA Stennis employee Thomas Wolfe is a senior mechanical engineering associate for Syncom Space Services at NASA Stennis. He received the honor for contributions to numerous safe and successful government and commercial test projects at NASA Stennis, along with his record of consistent performance and achievement.
> Back to Top
Center Activities
Summer Interns Display NASA Stennis Work
NASA Stennis summer intern Joseph Dulog, left, shares about his work on a lunar fluid systems developmental platform during an Aug. 7 event hosted by the Office of STEM Engagement. Dulog, a student at Rowan University in Glassboro, New Jersey, worked with the NASA Stennis Autonomous Systems Laboratory. The poster symposium highlighted research topics, including propulsion test operations, lunar robotics, autonomous systems, STEM education, and more. NASA’s Office of STEM Engagement paid internships allow high school and college-level students to contribute to the agency’s mission to advance science, technology, aeronautics, and space exploration. NASA/Danny Nowlin NASA Stennis summer intern Madison Godbold, right, shares about her work of inspiring the Artemis Generation through ASTRO Camp activities during an Aug. 7 event hosted by the Office of STEM Engagement. Godbold, a student at The University of Southern Mississippi in Hattiesburg, worked with the NASA Stennis Office of STEM Engagement. The poster symposium highlighted research topics, including propulsion test operations, lunar robotics, autonomous systems, STEM education, and more. NASA’s Office of STEM Engagement paid internships allow high school and college-level students to contribute to the agency’s mission to advance science, technology, aeronautics, and space exploration. NASA/Danny Nowlin NASA Stennis summer intern Lekh Patel shares about his work on lunar communications during an Aug. 7 event hosted by the Office of STEM Engagement. Patel, a student at Rutgers University in Newark, New Jersey, worked with the NASA Stennis Autonomous Systems Laboratory. The poster symposium highlighted research topics, including propulsion test operations, lunar robotics, autonomous systems, STEM education, and more. NASA’s Office of STEM Engagement paid internships allow high school and college-level students to contribute to the agency’s mission to advance science, technology, aeronautics, and space exploration.NASA/Danny Nowlin NASA Stennis summer intern Logan Blesse, left, shares about his work on future lunar autonomous robotic development during an Aug. 7 event hosted by the Office of STEM Engagement. Blesse, a student at The University of Southern Mississippi in Hattiesburg, worked with the NASA Stennis Autonomous Systems Laboratory. The poster symposium highlighted research topics, including propulsion test operations, lunar robotics, autonomous systems, STEM education, and more. NASA’s Office of STEM Engagement paid internships allow high school and college-level students to contribute to the agency’s mission to advance science, technology, aeronautics, and space exploration. NASA/Danny Nowlin NASA Stennis summer intern Jordan Thomas is shown with his presentation on the 2024 Sustainability Report for NASA Stennis during an Aug. 7 event hosted by the Office of STEM Engagement. Thomas, a student at the University of South Alabama in Mobile, worked with the NASA Stennis Center Operations Directorate. The poster symposium highlighted research topics, including propulsion test operations, lunar robotics, autonomous systems, STEM education, and more. NASA’s Office of STEM Engagement paid internships allow high school and college-level students to contribute to the agency’s mission to advance science, technology, aeronautics, and space exploration. NASA/Danny Nowlin NASA Stennis summer intern Dylan Williams is shown with his presentation highlighting work with test operations during an Aug. 7 event hosted by the Office of STEM Engagement. Williams, a student at Meridian Community College in Meridian, Mississippi, worked with the NASA Stennis Engineering and Test Directorate. The poster symposium highlighted research topics, including propulsion test operations, lunar robotics, autonomous systems, STEM education, and more. NASA’s Office of STEM Engagement paid internships allow high school and college-level students to contribute to the agency’s mission to advance science, technology, aeronautics, and space exploration. NASA’s Rocket Propulsion Test Program Office Visits NASA Stennis
NASA and contractor representatives working with NASA’s Rocket Propulsion Test Program Office stand at the base of the Thad Cochran Test Stand during a tour of the test complex on Aug. 15 at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. The program office hosted a Risk Workshop and Program Management Review meeting at NASA Stennis on Aug. 13-15. The representatives are from NASA Stennis; NASA’s Neil Armstrong Test Facility in Sandusky, Ohio; NASA’s Michoud Assembly Facility in New Orleans; NASA’s Marshall Space Flight Center in Huntsville, Alabama; NASA’s Wallops Flight Facility in Virginia; and NASA Headquarters in Washington. NASA Stennis is preparing the Thad Cochran Test Stand (B-2) to test the exploration upper stage, which will fly on future SLS (Space Launch System) missions as NASA continues its mission of exploring the secrets of the universe for the benefit of all. The upper stage is being built at NASA Michoud as a more powerful second stage to send the Orion spacecraft to deep space. It is expected to fly on the Artemis IV mission. Before that, it will be installed on the test stand at NASA Stennis to undergo a series of Green Run tests of its integrated systems to demonstrate it is ready to fly. NASA/Shane Corr Java with John Hosts NASA Stennis Employees
NASA Stennis Director John Bailey hosts a Java with John session with agency employees Aug. 22. The employee-led discussion happens in a relaxed environment with conversations aimed at fostering a culture where employees are welcome to share what matters most to them at work. NASA/Danny Nowlin NEX Stennis Receives 2023 Bingham Award
The Navy Exchange Service Command presented NEX Stennis with the 2023 Bingham Award during an Aug. 26 ceremony at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. NEX Stennis, a gas station and minimart at NASA Stennis, is one of nine winners for the award recognizing excellence in customer service, operations, and management. NEX Stennis and the Naval Construction Battalion in Gulfport, Mississippi, topped sales category six by earning between $2.5 million and $4 million for the year. NASA Stennis Associate Director Rodney McKellip accepted the award on behalf of the center. Pictured (left to right) are Steve Dienes, NEX Stennis manager; McKellip; Robert Bianchi, rear admiral (retired) and chief executive officer of the Navy Exchange Service Command; and Katie Wilson, NEX Stennis general manager. NASA/Danny Nowlin > Back to Top
NASA in the News
FAQ: NASA’s Boeing Crew Flight Test Return Status – NASA NASA Engagement Platform Brings Experts to Classrooms, Communities – NASA Artemis Emergency Egress System Emphasizes Crew Safety – NASA NASA Teams Change Brakes to Keep Artemis Crew Safe – NASA NASA’s X-59 Progresses Through Tests on the Path to Flight International Observe the Moon Night – Moon: NASA Science Employee Profile: Joseph Ladner
Joseph Ladner’s experiences working at NASA’s Stennis Space Center near Bay St. Louis, Mississippi, motivate him to “pay it forward” so more people can be a part of something great.
Joseph Ladner stands at NASA’s Stennis Space Center near Bay St. Louis, Mississippi, where he leads a team managing the budgets to fund the nation’s premier propulsion test site. NASA/Danny Nowlin Read More About Joseph Ladner > Back to Top
Additional Resources
STEM: NASA Astro Camp Community Partners Program (fox8live.com) Catching up with Stennis Space Center’s New Director – WXXV News 25 (wxxv25.com) New and Notables: John Bailey – Biz New Orleans Good Things with Rebecca Turner – SuperTalk Mississippi (interview with NASA Stennis employees Lee English Jr. and Noah English) Certifying Artemis Rocket Engines – NASA (Houston We Have a Podcast segment featuring NASA Stennis engineers Chip Ellis and Bradley Tyree) NASA Stennis Overview – Going Further video Subscription Info
Lagniappe is published monthly by the Office of Communications at NASA’s Stennis Space Center. The NASA Stennis office may be contacted by at 228-688-3333 (phone); ssc-office-of-communications@mail.nasa.gov (email); or NASA OFFICE OF COMMUNICATIONS, Attn: LAGNIAPPE, Mail code IA00, Building 1111 Room 173, Stennis Space Center, MS 39529 (mail).
The Lagniappe staff includes: Managing Editor Lacy Thompson, Editor Bo Black, and photographer Danny Nowlin.
To subscribe to the monthly publication, please email the following to ssc-office-of-communications@mail.nasa.gov – name, location (city/state), email address.
Explore More
5 min read Lagniappe for August 2024
Article 4 weeks ago 6 min read Lagniappe for July 2024
Article 2 months ago 9 min read Lagniappe for June 2024
Explore the Lagniappe for June 2024 issue, featuring an innovative approach to infrastructure upgrades, how…
Article 3 months ago View the full article
-
By NASA
Congratulations to the ACS3 Team on the Successful Unfurling of Solar Sail
Ames and Langley just added another light to the night sky. Congratulations to the Advanced Composite Solar Sail System (ACS3) team on the successful test of our next-generation solar sail technology that will allow future small spacecraft to “sail on sunlight” as they explore the cosmos. On Aug. 29, the team saw the first images captured by the CubeSat cameras as the mission accomplished its primary objective – successfully deploying the reflective polymer solar sail and its four composite booms in space. We are eager to share high-resolution images from the spacecraft in the coming weeks.
Artist’s conception of the Advanced Composite Solar Sail System fully opened. The solar sail employs the pressure of sunlight for propulsion, eliminating the need for conventional rocket propellant.Graphic credit: NASA As the team celebrates achieving this milestone and the exciting possibilities for future small spacecraft missions, it’s a bittersweet victory. As many of you know, the mission’s lead systems engineer, Alan Rhodes, passed away unexpectedly in June. He devoted more than three years to the mission and watched with enthusiasm as the CubeSat launched on April 23. He is in our thoughts as the mission celebrates this latest milestone.
After sunset, the best opportunities to see the CubeSat’s sail that spans 33 x 33 feet or half a tennis court will be in the northern skies. Stay tuned to NASA.gov and @NASAAmes on social media for updates on how to see the spacecraft passing over your area. Look for details in an upcoming centerwide with instructions on how to use the NASA App to help you narrow your search for the most accurate viewing opportunities.
This mission is another shining example of the inspiration, talent, and innovation that drives the work that we do to develop forward-thinking technologies. Our efforts are impactful and continue to create new possibilities for robotic spaceflight. We can’t wait to see what’s next for the Advanced Composite Solar Sail System.
Ames Welcomes Agency Senior Leadership
by Tara Friesen
NASA Associate Administrator Jim Free, NASA Deputy Associate Administrator Casey Swails, and Director of Cross Agency Strategy Integration John Keefe, visited Ames on Aug. 28 to meet with Ames leadership, tour the facilities, and meet with employees. This was Free’s first visit to Ames since he was appointed associate administrator in November 2023, and Keefe’s first visit since recently joining NASA.
Terry Fong, right, explains the operation of the Volatiles Investigating Polar Exploration Rover (VIPER) using a model of the rover. Left to right: Director of Cross Agency Strategy Integration John Keefe, Deputy Associate Administrator Casey Swails, and Ames Associate Center Director Amir Deylami in the Multi-Mission Operations Center (MMOC), building N240.Photo credit: NASA/Ames Donald Richey While spending the day at the center, Free, Swails, and Keefe heard from Ames subject matter experts across many center core competences and missions. They visited the Space Biosciences Research Lab, the Advanced Supercomputing Facility where they were able to see the Hyperwall and the Modular Supercomputer; the VIPER (Volatiles Investigating Polar Exploration Rover) Mission Control Center, and the Arc Jet Facility. They also visited Future Flight Central, the AOL (Airspace Operations Lab), and took part in a wildfire demonstration and discussion. They completed their tour in the NASA Research Park and then toured the Unitary Plan Wind Tunnel drive system where they viewed a model of the X-66 demonstrator aircraft semi span currently in the test section. They also walked through the area where the proposed Berkeley Space Center will be built.
Deputy Associate Administrator Casey Swails examines a sample of algae through a microscope in the Space Biosciences Research Laboratory, in building N288.Photo credit: NASA/Ames Donald Richey As we always say, there’s a little bit of Ames in every NASA mission. Thank you to all the members of the Ames community who supported this visit and shared updates on their work with agency senior leadership.
NASA Celebrates Ames’ Legacy of Research on National Aviation Day
by Tara Friesen
NASA works every day to improve air travel – and has been doing so since its creation decades ago. On National Aviation Day, Aug. 19, NASA and all fans of aviation got the chance to celebrate the innovative research and development the agency has produced to improve capability and safety in flight.
Early research at NASA’s Ames Research Center in California’s Silicon Valley — then known as NACA Ames Aeronautical Laboratory – included ground tests of “hot wing” anti-icing systems on a Lockheed 12A aircraft.Photo credit: NASA NASA’s Ames Research Center in California’s Silicon Valley has a historic legacy in aeronautics research. When the center was founded in 1939 by the National Advisory Committee for Aeronautics (NACA), its early research included working to reduce icing on aircraft wings.
When ice coats the wings of an airplane, it reduces lift and increases drag, which can cause the aircraft to lose altitude and control. Ames researchers developed different approaches to solve the icing challenge, including a “hot wing” thermal anti-icing system. The system worked by running hot engine exhaust along the leading edges of aircraft wings, warming them and preventing ice buildup. Ames researchers modified aircraft and tested them before traveling to Minnesota, where they were flown in icy conditions.
Today, many turbine-powered aircraft, like passenger jets, use “bleed air” anti-icing systems, which warm the leading edges of aircraft wings using compressed air from their engines. These systems are built upon the early research and testing done at Ames.
The legacy of aviation innovation continues at Ames, through aeroscience research like wind tunnel testing, air traffic management, and advanced aircraft systems.
Ames’ WIN, WiO and the USAF Host Inspiring Women’s Equality Day Event
In 1973, Congress designated August 26 as Women’s Equality Day to commemorate the 1920 certification of the 19th Amendment to the Constitution, granting women the right to vote. Since then, the observance has grown to include focusing attention on women’s continued efforts toward gaining full equality. Voting is one of the primary ways we participate in the political process, express our opinions, and help shape the goals and values of our nation. Since 1973, we have celebrated Women’s Equality Day on Aug. 26 to commemorate the certification of the 19th Amendment in 1920, which granted women the right to vote. We honor the efforts of the suffragists who fought tirelessly for equality throughout the early 1900s and the work that continued after certification to ensure all women were able to exercise that right.
The WIN/WiO panel included the following speakers, left to right: Dr. Meghan Saephan, computer engineer in the Intelligent Systems Division and chair of the Women’s Influence Network Employee Resource Group; Shaina Sethna, safety engineer in the Plant Engineering Branch, member of the Women in Operations group and Women’s Influence Network, and the Special Emphasis Program manager for Federal Women at Ames; Erin Cook, deputy center director of Center Operations and colonel in the Air Force Reserves, where she serves as the Individual Mobilization Augmentee to the vice commander Air Logics Complex, in Oklahoma City, and the Ames Women in Operations group executive sponsor; and Bee Davis, a senior infrastructure engineer at Johnson Space Center in the Flight Operations Directorate, and member of the Women’s Influence Network Employee Resource Group. The moderator, far right, was Airman First Class Nicholas Mangrum. At the time of its founding in 1958, NASA was a male-dominated workforce. By the 1960s, women were making significant contributions to the Apollo mission. Today, the trend continues to head in the right direction. Five of NASA’s 10 centers have women directors in center leadership and women are engaged in every facet of science, discovery, and exploration.
Ames’ Women’s Influence Network (WIN), Women in Operations (WiO), and the US Air Force National Guard hosted an inspiring Women’s Equality Day event on Aug. 26 at the RQW Airmen Resiliency Center in Mountain View. The Ames event included a panel featuring women from WIN and WiO, as well as presentations from NASA leaders, local elected officials, and other government agencies. Mayor Yan Zhao from the City of Saratoga attended. Mayor Pat Showalter from the City of Mountain View provided opening remarks, along with Deputy Center Director Dr. Dave Korsmeyer.
A presentation by the 129th Rescue Wing, which consists of the entire Air National Guard unit at Moffett Field. This portion of the program highlighted airmen in the 129thRescue Wing that had gone above and beyond. A second panel discussion was then held by the San Francisco Federal Bureau of Investigation.
NASA also hosted an agencywide event on Aug. 26, featuring Deputy Administrator Pam Melroy, Armstrong Flight Research Center’s Deputy Center Director Laurie Grindle, and NASA Historian Jennifer Ross-Nazzal.
Women’s Equality Day provides an opportunity to underscore the agency’s commitment to providing an inclusive and equitable workplace today and ensuring a welcoming future for the next generation of employees. It is not only the right thing to do; it is essential to NASA’s success.
Family Members Tour VIPER Mission Center
On Aug. 14, family members of the Volatiles Investigating Polar Exploration Rover (VIPER) were invited to see demonstrations and participate in hands-on activities at Ames for a friends and family day
Chris Provencher, center standing, explains the Volatiles Investigating Polar Exploration Rover (VIPER) mission to his family in the Multi-Mission Operations Center (MMOC), in building N240, for VIPER Friends and Family Day. Dennis Heher is seated at the control console on the left.
Photo credit: NASA/Ames Donald Richey Antoine Tardy, left, explains the operation of the Moon Gravity Representative Unit (MGRU3) at the Roverscape during Friends and Family Day for team members of the Volatiles Investigating Polar Exploration Rover (VIPER). MGRU3 is a weight equivalent mobility and navigation test platform for VIPER. It is used to test, develop, and validate the different mobility and navigation techniques and capabilities of the VIPER rover.
Photo credit: NASA/Ames Donald Richey Arno Rogg explains the Volatiles Investigating Polar Exploration Rover (VIPER) mission to visitors in the Multi-Mission Operations Center (MMOC), in building N240, during the VIPER Friends and Family Day.
Photo credit: NASA/Ames Donald Richey Right to left: Jay Trimble, Rachel Hoover, and Kelsey Herrmann in the Multi-Mission Operations Center (MMOC), in building N240, during the Volatiles Investigating Polar Exploration Rover (VIPER) Friends and Family Day.
Photo credit: NASA/Ames Donald Richey National Full Scale Aerodynamic Complex (NFAC) Turns 80
National Full Scale Aerodynamic Complex (NFAC) 80th Anniversary commemorative group photo in the 40-foot-by-80-foot wind tunnel test section. Front row, kneeling, left to right, Jarvis Gross, Paul Gillis, Bartolome Aganon, Andrew Carrigan, Ana Chaverri, Matthew Nugyen, Kyle Lukacovic, Luisito Icari, Tristan Eberbach, Nili Gold, James Bailey, Sarah Sarra, Emily Sayles, Angela Carter, Janice Lim, and Brenda Fox. Second row, from left to right, Meliton Abenojar, Daniel Brookbank, Frank Pichay, Ryan Edwards, Dan Pruyn, Tyler Pearsall, Joseph Candaso, April Gage, Steve Nance, Doug Wardwell, Tim Naumowicz, Vick Corsiglia, Alfred Lizak, Kenneth Mort, Mike Herrick, Chutchai Chompupong, Emmanuel Nyangweso, Sandra Ruiz, Michelle Foster, Rick Shinoda, Brian Vazquez, and Derek Witman. Thrid Row, from left to right, , Pete Zell, Abiael Rivera Lopez, Cory Koehne, Shawn Abedajos, Chris Nykamp, Kevin Boyce, Jose Navarrete, Alex Shikman, Daniel Grieb, Nathan Noma, Patrick Goulding, David Wang, Dan Boyd, Bill Warmbroth, Wally Acree, Hank Schwoob, Joseph Sacco, Scott Jaffa, Rob Fong, Jim Ross, Tom Norman, Jeffrey Johnson, Tom Arledge, Arturo Zamora, Athena Chan, Craig Morrison, Jonathan Winegar, Samuel Huang, Johannes van Aken, and Todd Fuller.Photo credit: NASA/Ames Brandon Torres NASA Seeks Input on Safety for Future Commercial Drone Operations
by Hillary Smith
NASA recently gathered representatives from the Federal Aviation Administration (FAA), police and fire departments, and commercial industry to figure out how to take an important step for public safety drones: allowing them to fly past where their operators can see them.
Currently, most drone operations are limited to areas known as “visual line of sight” for safety purposes. However, engineers and researchers are developing the infrastructure to allow drones to operate beyond this point. As the FAA works to authorize these types of flights, NASA is helping ensure these operations are safe and efficient.
Drones in flight in downtown Reno, Nevada, during shakedown tests for NASA’s Unmanned Aircraft Systems Traffic Management project, or UTM. The final phase of flight tests, known as Technical Capability Level 4, ran from May through August 2019 and studied how the UTM system can integrate drones into urban areas.Photo credit: NASA/Ames Dominic Hart This work from NASA and the FAA could have significant commercial applications – including drone deliveries – but at their June meeting, the agencies were focused on public safety drones used for search-and-rescue, accident scene reconstruction, and situational awareness during fires and other emergencies. Researchers need to figure out how drones on public safety missions can operate safely beyond visual line of sight – and do so in airspace shared with drones on commercial missions.
Hosted by NASA’s Ames Research Center in California’s Silicon Valley, the meeting took place in Arlington, Texas City Hall. Attendees included members of the FAA, the Department of Homeland Security, the Texas Department of Public Safety, the Arlington local police and fire departments, and representatives of the Dallas-Fort Worth International Airport. The group’s discussion included the special considerations needed for public safety drone operations beyond visual line of sight. And they identified at least one significant challenge: how to ensure that public safety drones have priority when operating in the same airspace with commercial drones.
NASA researchers provided feedback from this session to the FAA, commercial drone operators, and service providers. Input from the public safety meeting will support the FAA’s evaluation of commercial drone flights beyond visual line of sight, which the agency is currently conducting in the Dallas-Fort Worth area. Data from these operations will inform FAA rulemaking.
NASA’s work is led by its Uncrewed Aircraft Systems Traffic Management System Beyond Visual Line of Sight effort, which falls under the Air Traffic Management Exploration project. This subproject directly supports NASA’s Advanced Air Mobility mission. Advanced Air Mobility aims to transform our communities by bringing the movement of people and goods off the ground, on demand, and into the sky.
New Zealand Prime Minister Tours Ames, Celebrates Partnership
On July 12, Ames welcomed the Prime Minister of New Zealand, Christopher Luxon. New Zealand was a pivotal partner in crafting the Artemis Accords and is a longstanding partner with NASA in commercial space and Earth science.
At Ames, the prime minister was hosted in the Advanced Supercomputing Facility where he was briefed on Ames’ core competences and learned about NASA’s partnership with Rocket Lab to launch missions from New Zealand’s coast including the Advanced Composite Solar Sail,Starling, and CAPSTONE.
Ames Center Director Eugene Tu, left, and New Zealand Prime Minister Christopher Luxon, right, in front of the HyperWall facility in building N258.Photo credit: NASA/Ames Brandon Torres He also met with two Ames interns from New Zealand’s Space Scholarship program, Alex McKendry, who is researching neuromorphic computing applications in small spacecraft autonomy, and Faun Watson, who is using the Low Density Shock Tube to simulate sustainable satellite de-orbiting technology. The students are here under the NASA International Internships Project.
New Zealand Prime Minister Christopher Luxon, left, greets NASA interns Faun Watson and Alexandra McKendry before departing the lobby of N258.Photo credit: NASA/Ames Brandon Torres In addition, Ames experts briefed the prime minister on NASA’s and New Zealand’s collaborative efforts to study Earth’s interconnected systems. He also learned about SOFIA’s enduring connection to New Zealand, which hosted the aircraft seven times to observe objects visible in the southern hemisphere.
Before leaving the center, the prime minister visited the Pleiades and Cabeus supercomputers and examined the capabilities of the facility’s upgraded hyperwall, which brings numerical data to life with over a billion pixels across 128 screens.
Ames leadership spoke with the prime minister about a partnership between NASA’s Indigenous Peoples Initiative, the Society for Māori Astronomy Research and Traditions, and members of the Māori Working Group in Aerospace. This partnership will support the need for Māori-led initiatives to monitor environmental and ecological impacts in their communities and add diverse voices to Earth observations and research.
It is a privilege to welcome our international partners to Ames and share our wealth of knowledge and technology. Collaboration is critical to NASA’s mission, particularly as we go back to the Moon and beyond, together. We value our continued partnership with New Zealand and their role in Earth science and the evolving commercial space industry.
NASA’s Upgraded Hyperwall Offers Improved Data Visualization
by Tara Friesen
In May, the NASA Advanced Supercomputing (NAS) facility, located at Ames Research Center, celebrated the newest generation of its hyperwall system, a wall of LCD screens that display supercomputer-scale visualizations of the very large datasets produced by NASA supercomputers and instruments.
NAS visualization and data sciences lead Chris Henze (far left) demonstrates the newly upgraded hyperwall visualization system to Ames Center Director Eugene Tu (second from left), deputy center director David Korsmeyer (second from right), and High-End Computing Capability manager William Thigpen (far right.)Photo credit: NASA/Ames Brandon Torres The upgrade is the fourth generation of hyperwall clusters at NAS. The LCD panels provide four times the resolution of the previous system, now spanning across a 300-square foot display with over a billion pixels. The hyperwall is one of the largest and most powerful visualization systems in the world.
Systems like the NAS hyperwall can help researchers visualize their data at large scale, across different viewpoints or using different parameters for new ways of analysis. The improved resolution of the new system will help researchers “zoom in” with greater detail.
The hyperwall is just one way researchers can utilize NASA’s high-end computing technology to better understand their data. The NAS facility offers world-class supercomputing resources and services customized to meet the needs of about 1,500 users from NASA centers, academia and industry.
Liftoff! Redesigned NASA Ames Visitor Center Engages Kids, Families
by Tara Friesen
The San Francisco Bay Area has a new and interactive way to learn more about the innovative work of NASA’s Ames Research Center. A newly redesigned NASA Ames Visitor Center at Chabot Space & Science Center in Oakland, California, reopened to the public June 22 at the NASA Fest at Chabot celebration.
The newly revitalized NASA Ames Visitor Center opened at the Chabot Space and Science Center in Oakland, California on June 22, 2024.Photo credit: NASA/Ames Donald Richey Chabot Space & Science Center director Adam Tobin, right, welcomes NASA Ames center director Eugene Tu, left, and deputy center director David Korsmeyer, center, to the updated NASA Ames Visitor Center.Photo credit: NASA/Ames Donald Richey The two-day festival included hands-on activities, workshops, and conversations with NASA Ames experts, as well as presentations from local STEM organizations.
“Curiosity and inspiration are the core of what we do at NASA,” said Eugene Tu, center director at Ames. “This new exhibit is a chance for us to share a bit of what happens behind the scenes that makes our work possible and inspire the next generation.”
The NASA Ames Visitor Center includes exhibits and activities, sharing the work of NASA in Silicon Valley with the public.Photo credit: NASA/Ames Donald Richey The updated visitor center includes a fully reimagined 360-degree experience, featuring new exhibits, models, and more. An interactive exhibit puts visitors in the shoes of a NASA Ames scientist, designing and testing rovers, planes, and robots for space exploration.
The NASA Ames Visitor Center first opened at Chabot in November 2021. The newly reimagined space is one way NASA seeks to engage and excite kids and families in science and technology.
NASA Cloud-Based Platform Could Help Streamline, Improve Air Traffic
by John Gould
Just like your smartphone navigation app can instantly analyze information from many sources to suggest the best route to follow, a NASA-developed resource is now making data available to help the aviation industry do the same thing.
To assist air traffic managers in keeping airplanes moving efficiently through the skies, information about weather, potential delays, and more is being gathered and processed to support decision making tools for a variety of aviation applications.
Appropriately named the Digital Information Platform (DIP), this living database hosts key data gathered by flight participants such as airlines or drone operators. It will help power additional tools that, among other benefits, can save you travel time.
This image shows an aviation version of a smartphone navigation app that makes suggestions for an aircraft to fly an alternate, more efficient route. The new trajectories are based on information available from NASA’s Digital Information Platform and processed by the Collaborative Departure Digital Rerouting tool.Photo credit: NASA “Through DIP we’re also demonstrating how to deliver digital services for aviation users via a modern cloud-based, service-oriented architecture,” said Swati Saxena, DIP project manager at NASA’s Ames Research Center in California.
The intent is not to compete with others. Instead, the hope is that industry will see DIP as a reference they can use in developing and implementing their own platforms and digital services.
“Ultimately, the aviation industry – the Federal Aviation Administration, commercial airlines, flight operators, and even the flying public – will benefit from what we develop,” Saxena said.
The platform and digital services have even more benefits than just saving some time on a journey.
For example, NASA recently collaborated with airlines to demonstrate a traffic management tool that improved traffic flow at select airports, saving thousands of pounds of jet fuel and significantly reducing carbon emissions.
Now, much of the data gathered in collaboration with airlines and integrated on the platform is publicly available. Users who qualify can create a guest account and access DIP data at a new website created by the project.
It’s all part of NASA’s vision for 21st century aviation involving revolutionary next-generation future airspace and safety tools.
Managing Future Air Traffic
During the 2030s and beyond, the skies above the United States are expected to become much busier.
Facing this rising demand, the current National Airspace System – the network of U.S. aviation infrastructure including airports, air navigation facilities, and communications – will be challenged to keep up. DIP represents a key piece of solving that challenge.
NASA’s vision for future airspace and safety involves new technology to create a highly automated, safe, and scalable environment.
What this vision looks like is a flight environment where many types of vehicles and their pilots, as well as air traffic managers, use state-of-the-art automated tools and systems that provide highly detailed and curated information.
These tools leverage new capabilities like machine learning and artificial intelligence to streamline efficiency and handle the increase in traffic expected in the coming decades.
Digital Services Ecosystem in Action
To begin implementing this new vision, our aeronautical innovators are evaluating their platform, DIP, and services at several airports in Texas. This initial stage is a building block for larger such demonstrations in the future.
“These digital services are being used in the live operational environment by our airline partners to improve efficiency of the current airspace operations,” Saxena said. “The tools are currently in use in the Dallas/Fort Worth area and will be deployed in the Houston airspace in 2025.”
The results from these digital tools are already making a difference.
Proven Air Traffic Results
During 2022, a NASA machine learning-based tool named Collaborative Digital Departure Rerouting, designed to improve the flow of air traffic and prevent flight delays, saved more than 24,000 lbs. (10,886 kg.) of fuel by streamlining air traffic in the Dallas area.
If such tools were used across the entire country, the improvements made in efficiency, safety, and sustainability would make a notable difference to the flying public and industry.
“Continued agreements with airlines and the aviation industry led to the creation and expansion of this partnership ecosystem,” Saxena said. “There have been benefits across the board.”
DIP was developed under NASA’s Airspace Operations and Safety Program.
Ames Selected Co-Winner 2024 NASA Software of the Year Award
Ames Research Center is a co-winner for the 2024 NASA Software of the Year (SOY) award for “ProgPy -Prognostics Python” software, which was among five submissions competing this year. NASA Johnson Space Center also was selected as co-winner of the SOY award. Put simply, ProgPy helps predict how long a machine will work before it runs into challenges, essentially computing its remaining useful life (more information below).
The agency-wide annual SOY competition rewards high-quality, innovative, and robust software using efficient software engineering processes that meet NASA’s stringent safety and reliability standards. Sponsors of the competition include the NASA Chief Engineer, the NASA Chief Information Officer, and the NASA Office of Safety and Mission Assurance. NASA’s Inventions and Contribution Board (ICB) reviewed and ranked the nominations, in coordination with the sponsors.
Congratulations to the ProgPy team from Code TI: Christopher Teubert, Katelyn Griffith, Matteo Corbetta, Chetan Kulkarni, Jason Watkins, Matthew J. Daigle, Portia Banerjee, Adam Sweet and interns, Miryam Strautkalns, and Aditya Tummala for this recognition by the agency.
The NASA Prognostic Package (ProgPy) is a python prognostics framework focused on building, using, and evaluating models and algorithms for prognostics (computation of remaining useful life). It also includes the health management of engineering systems and provides a set of prognostics models for select components and prognostics algorithms developed within this framework, suitable for use in prognostics for these components. In addition to algorithms for state estimation and prediction, including uncertainty propagation. ProgPy combines NASA’s prog_models and prog_algs packages into a single python package, for simplicity and clarity.
Every new software developed or improved, helps advance the agency’s work. Employees are invited to submit disclosures on your software and technology development work at https://invention.nasa.gov to make these important benefits a reality.
Special Thanks
Appreciation and special thanks to Ames’ Technology Transfer Office, Inventions and Contributions Board (ICB) members, and 2024 NASA SOY selection panel members who reviewed and selected the technology that Ames put forward for the agencywide competition. They helped assemble, vet, and submit the nomination package and helped prepare the team for their final presentation delivered to the SOY Judging Panel.
Congratulations to the ProgPY team for this recognition and for continuing the Ames tradition of leading the agency in software development!
Former NASA Software of the Year Winners
As a center, we have enjoyed great success in previous NASA Software of the Year (SOY) competitions. This achievement adds to our legacy, which includes:
Unsteady Pressure-Sensitive Paint (uPSP), (Honorable Mention, 2023)
Porous Microstructure Analysis (PuMA), (Software of the Year, 2022)
Airspace Technology Demonstration 2 (ATD-2) (Runner-Up, 2021)
Astrobee Robot and Ground Software (Runner-Up, 2020)
UAS Traffic Management Services (UTM) (Software of the Year, 2019)
NASA Task Load Index TLX, (Runner-Up, 2018)
TSAS for Air Traffic Control (Software of the Year, 2017)
Pegasus 5 CFD Tool (Software of the Year, 2016)
NEQAIR v14.x Non-Equilibrium Radiative Transport and Spectra Program (Software of the Year, 2015)
Configuration-Based Aerodynamics (CBAERO) with Marshall Space Flight Center (Software of the Year, 2014)
NASA App with JPL (Software of the Year, 2012)
Kepler Science Operations Center (SOC) (Software of the Year, 2010)
World Wind Java (Software of the Year, 2009)
Data Parallel Line Relaxation Code (DPLR) (Software of the Year, 2007)
Future Air Traffic Management Concepts Evaluation Tool (FACET) (Software of the Year, 2006)
Cart3D (Software of the Year, 2002)
Remote Agent with JPL (Software of the Year, 1999)
Center TRACON Automation System (Software of the Year, 1998)
Flow Analysis Software Toolkit (FAST) (Software of the Year, 1995)
Incompressible Navier-Stokes Flow Solver in Three Dimensions (INS3D) (Software of the Year, 1994)
The ICB members included Leland Stone (Code TH) and Mary Livingston (Code AA). Leland also serves as chair of Ames’ Software of the Year selection panel. From the Ames Technology Transfer Office (Code DI): Kim Hines (Chief), Kimberly Minafra, Hong Vong, Jay Singh, and Katie Smyth. The 2024 Ames SoY Selection Panel members were Harry Partridge (Code D), Craig Pires (Code D), Robert Duffy (Code TI), Robert Windhorst (Code AFH), Estela Buchmann (Code AF), Sean Colgan (Code STA).
Careers & disABLED Magazine names Nathaniel Smith 2024 Employee of the Year
Nathanial (Neal) Smith, an aerospace engineer at Ames in the Experimental Aero-Physics Branch (Code AOX) was selected as Employee of the Year by Careers & the disABLED Magazine for his professional and advocacy efforts on behalf of people with disabilities in the workplace and in the community. His research is computer vision-based technique implementations for novel approaches to optical data reduction, and flow physics analysis. He is open to sharing about his disability to inspire others.
Aerospace Engineer Nathanial (Neal) Smith has been selected as Employee of the Year by CAREERS & the disABLED Magazine. Congratulations Neal! As Administrator Nelson has said, ensuring NASA is inclusive and accessible is critical to the agency’s ability to innovate, achieve excellence, and advance the mission. We are fortunate to benefit from Neal’s commitment to this goal here at Ames. The NASA Ames family is proud of your contributions to the agency and your continuous involvement with the Ames Disability Advocates employee resource group. Find out more about Neal and his award in the Spring Awards issue of Careers & the disABLED.
Awardees of the FY24 Ames Research Innovation Award Announced
The Office of the Chief Scientist (OCS) is pleased to announce the FY24 Ames Research Innovation Award (ARIA) awardees.
ARIA promotes the vitality of Ames through strategic investments in scientific research, capabilities, and people. It encourages the development of new, high-risk/high-return investigations that stress innovation, exploration, and/or interdisciplinary work. ARIA focuses on innovative or basic scientific research in areas that are relevant to agency and center goals, without necessarily being tied to any specific future mission opportunity. ARIA proposals must be research oriented and are considered seedling funding for innovative/disruptive research that will enable next generation science and research.
Image credit: NASA Please join us in congratulating the FY24 ARIA awardees:
Don Banfield, “Ice Giant Watchdog Concept” Jared Broddrick, “Systems Biology Analysis of Biological Payload Telemetry Data” Egle Cekanaviciute, “Human Airway Model Responses to Airborne Stimuli” Michael Flynn, “Radio-catalytic Radiation Protection” Jessica Koehne, “Detection and Characterization of Single Mag-EC ELISA Constructs for Ultra-Low LOD Life Detection” Yasaman Shirazi, “Assessing miRNA Biomarkers Associated with Spaceflight Induced Bone Loss and Fracture Risk” Visit the OCS website for more information.
Congratulations to the Awardees of the 2024 Internal Research and Development
Ames Research Center is pleased to announce the awardees of the FY24 Internal Research and Development (IRAD).The IRAD develops strategic technical capabilities in support of the center competencies and thereby enables science, technology, and engineering efforts for future agency missions. The advances in science and technology through this program will provide potential opportunities for technical risk reduction and/or increased cost effectiveness and initiate potentially transformational solutions.
Image credit: NASA Congratulations to the FY24 IRAD awardees:
Walter Alvarado, Biomarkers in Radiation Exhalation Assessment Tool for Health Evaluation (BREATHE).
Don Banfield, Mars Doppler Wind & Thermal Sounder Ozone Cell Maturation.
Grace Belancik, Cryocooler-Deposited CO2 Purifier.
Amanda Brecht, AIR (Ames Infrared Imager): Maturation of a Compact and Versatile Hyperspectral Imager.
Anthony Colaprete, Moon3D and Dust Particle Suite: An Artemis IV Deployed Payload.
Magnus Haw, IMPedance Analysis and Certification Technology (IMPACT).
Tori Hoehler, Verification and Validation of ARC Enceladus Life Signatures and Habitability (ELSAH) Payload Elements for New Frontiers 5.
Brian Kempa, DARTS: Distributed Autonomous Robotic Tomography of Seismics.
Jessica Lee, Fluorescence detection and optogenetic activation for microbial experimentation beyond LEO.
Mike Padgen, SAMMS: Spaceflight Autonomous Multigenerational Microbial Sequencer.
Keith Peterson, PICA-Flex: A Low-Cost Advanced Ablative TPS in NASA’s New MERINO Family of Materials (Materials Engineered for Re-entry using Innovative Needling Operations).
Richard Quinn, Microfluidic Icy-World Chiral-Chemistry Analyzer (MICCA).
Naseem Rangwala, Enabling a New Vacuum High-Contrast Imaging Testbed for NASA’s Habitable Worlds Observatory.
Farid Salama, Developing a New Negative Ion Production System on the COSmIC Facility for Interstellar and Planetary applications.
This year, the IRAD was highly competitive with more than 65 proposals submitted from across the center and represents an over 100% increase in the number of proposals submitted compared to last year. The 14 proposals selected represent an approximately $2.8 million center investment over two years and consists of 13 proposals by principal investigators not in the FY23 awards.
We appreciate everyone’s interest in this important program and look forward to hearing about the results of these investigations.
Congratulations to all the FY24 IRAD recipients!
Visit the IRAD website for more information.
Dr. Yvonne Cagle Receives Presidential Lifetime Achievement Award, Gold Medal
Congratulations to NASA astronaut and longtime Ames Management Astronaut Representative, Dr. Yvonne Cagle, currently assigned to the Partnerships Office, who was presented with the Presidential Lifetime Achievement Award, Gold Medal, on June 17.
Dr. Yvonne Cagle recent recipient of the Presidential Lifetime Achievement Award, Gold Medal.Photo credit: NASA Cagle received the award during Black Space Week, following her participation on a panel with fellow astronauts Victor Glover, Jessica Watkins, Leland Melvin, and Joan Higginbotham at the National Museum of African American History and Culture. The panel examined the past, present, and future of space exploration.
At the event, Cagle shared her insight upon returning from a sailing research trip studying the geoscience and thermal chemical profiles of the oceans in anticipation of planetary soil sampling opportunities for future lunar and Mars missions. As NASA prepares to send humans back to the Moon and on to Mars, we need to consider, “The way the planet speaks, the way the soil speaks, the way the ocean can let us know when its coasts are under strain, and how that can be really disruptive to our planet and our lives… And I began to realize that the Earth is alive; it breathes. And I really want to use some of the discoveries I’ve made over my years as a medical doctor and overlay them on the face of the Earth, and then take that perspective to look back from the lens of space to see if we can all come together, work together to regenerate, thrive, and sustain ourselves both here on the planet and off.”
This most recent award joins many others that recognize Cagle’s excellence, including the National Defense Service Medal, Air Force Achievement Medal, United States Air Force Air Staff Exceptional Physician Commendation and National Technical Association Distinguished Scientist Award. A senior flight surgeon and a contributor to the study of astronaut health, Cagle is a valued colleague at Ames and an inspiration to the next generation of medical doctors, scientists, and space explorers.
National Academies Study Selects Dr. Jen Heldmann as Geosciences Panel Chair
Ames’ Planetary Scientist Dr. Jen Heldmann has been selected as Chair of the Geosciences Panel in a study led by the National Academies of Science, Engineering and Medicine (NASEM) entitled “A Science Strategy for the Human Exploration of Mars.” The Geosciences panel is one of four that will provide input to the steering committee to identify and prioritize Mars science objectives best conducted by humans. The panel’s report will also outline mission campaigns to achieve these prioritized science objectives.
Dr. Jen Heldmann, recently selected as Chair of the Geosciences Panel in a study led by the National Academies of Science, Engineering and Medicine. Aligning with NASA’s Moon to Mars Objectives
According to the National Academies: “A Science Strategy for the Human Exploration of Mars will identify high priority science objectives (in all relevant disciplines) to be addressed by human explorers across multiple science campaigns on the surface of Mars. This includes identifying and prioritizing science objectives from the relevant decadal survey reports and discipline roadmaps and NASA’s Moon to Mars Objectives, determining types of samples to be collected and measurements to be taken, identifying science campaigns to address the objectives, and identifying preliminary criteria for the selection of appropriate landing sites.
Research Interests
Heldmann’s research interests focus on planetary volatiles, in-situ resource utilization (ISRU) and enabling human exploration of the Moon and Mars. Her expertise includes spacecraft data analysis, numerical modeling, and fieldwork in Mars-analog environments in locations such as Chile’s Atacama Desert, the Canadian High Arctic and Antarctica. She has contributed to space missions starting with the Ames-led LCROSS (Lunar Crater Observation and Sensing Satellite) mission to the Moon, and currently serves as a science team member for the VIPER (Volatiles Investigating Polar Exploration Rover) mission.
Heldmann serves as principal investigator (PI) for both NASA’s FINESSE (Field Investigations to Enable Solar System Science & Exploration) and RESOURCE (Resource Exploration and Science of OUR Cosmic Environment) projects and has served as PI or co-I on a host of other projects and grants. She has supported the Artemis Program as a member of the Artemis III Science Definition Team, as co-lead of the Artemis III Geology Team, and as a crew trainer for Artemis Astronauts (among other duties).
Congratulations to Dr. Heldmann in her new role helping to lead NASA into the coming decades of human Mars exploration!
NASA Public Engagement Specialist Jonas Dino Loves to Inspire Kids with STEM
by Gianine Figliozi
Careers at NASA were not on his radar growing up. But Jonas Dino, public engagement specialist at NASA’s Ames Research Center in California’s Silicon Valley, ended up with his perfect job that involves connecting people with NASA.
Jonas Dino speaks to students at the Cezar Chavez Middle School in Union City, California, as part of a NASA-sponsored traveling space museum tour of Bay Area schools.Photo credit: NASA Ames/Dominic Hart One of the best parts of his job is to learn first-hand about NASA’s cutting-edge research and translate these concepts to the next generation.
“I’m excited about what NASA does and where we are going,” said Dino, “As an extrovert, I love interacting with the public, especially little kids.”
When speaking to younger children, Dino often kneels, to get to their level. With the future of aeronautics and space exploration in mind, he has a message for them: ‘NASA needs you.’
“They love space and think it is very cool, but many don’t think they could ever work at NASA,” said Dino. “I want to help them see: anything is possible.”
NASA’s Ames Research Center in California’s Silicon Valley takes NASA’s message on the road to area schools and public events with its public engagement trailer. Jonas Dino is shown unloading the trailer for an event.Photo credit: NASA Ames/Dominic Hart A path to NASA he didn’t know existed
A first-generation immigrant from the Philippines, Dino’s academic start focused on studying life sciences.
“As a Filipino, you’re encouraged to go into the medical field as a career,” said Dino.
After joining the Marine Corps, Reserve, he returned home to study biology at San Jose State University (SJSU). After doing poorly at organic chemistry, he took his next “logical” step and switched his major to nursing. After working in the field, he realized that was not for him either. Luckily, he had been taking psychology classes, following his interests, and could graduate with a psychology degree by only taking two more classes.
After three changes in major and just getting ready to graduate, Dino was hit by a car. His injury and subsequent recovery gave him time to evaluate what he wanted to do with his life.
“I was pretty good at talking to people and teaching,” said Dino. “Maybe I could do that as a job?”
Dino started his teaching career at James Logan – the same high school he graduated from in 1985. He eventually ran for and was elected as a trustee for the New Haven Unified School District in the San Francisco Bay Area. Unfortunately, to take that seat, he could not be a teacher in the district – a conflict of interest. Suddenly needing a job, he found the internship book at SJSU where he was getting his master’s degree. Soon, he was evaluating opportunities: a high-tech company or NASA?
“It was during the dotcom boom and my family strongly encouraged me to take the high-tech internship,” said Dino. “I took the internship at NASA Ames and have never regretted my decision.”
Working as a communicator, Dino has covered the gamut of NASA projects from aeronautics to space missions, including a lunar mission, LCROSS, that helped confirm the presence of water on the Moon.
His favorite part of his job is STEM engagement.
“There is nothing like seeing a kid’s eyes get larger, or that proverbial light-bulb-turn-on-above-their-heads when you teach them something new,” said Dino. “When you see kids are hungry for science, you need to feed it.”
He did serve his community on the school board for four terms – 16 years. Now, he serves as an advocate for the NASA Ames workforce as president of the Ames Federal Employees Union.
“NASA is a great place to work, it has been a blast, for nearly 24 years.”
Science data from NASA’s Lunar Crater Observation and Sensing Satellite (LCROSS) mission’s 2009 lunar impact helped confirm the presence of water on the Moon. Here, LCROSS Project Manager Daniel Andrews (left), points to a model of the LCROSS spacecraft integrated with the Atlas V Centaur upper stage rocket. Jonas Dino (right) led public communications for the mission at NASA Ames.Photo credit: NASA Ames/Eric James Nudging an asteroid
A little push in the right direction, even incidental, can have a huge effect on your trajectory – and thus where you end up – if it happens early on. This is true both for rogue rocks, on the loose in the solar system, and for people too.
“When I was a kid, I took apart everything because I wanted to know what’s inside and how everything worked,” said Dino. “Looking back, I should have been an engineer.”
“I have two children, a son and a daughter,” said Dino. “I’m encouraging my daughter to go into STEM; we need more young women in STEM careers but too many girls are pushed away from this choice by the time they are in middle school. I also want to encourage Filipino kids to make their own career choices and maybe even to come work for NASA.”
To help pursue these goals, Dino started a memorial scholarship in honor of his father for Filipino students going into STEM fields. He handed out the inaugural scholarship for this last May.
NASA never stops for Dino. Whether at work or on his free time, he’s always talking about NASA. While dishing out samples of his Filipino adobo recipe during a recent adobo-cooking contest – according to Dino, every Filipino family has their own recipe for this dish – he also handed out NASA knowledge. He won second place.
Summer Interns Present at Poster Session
Ames summer interns presented their research projects that they worked on during the summer to center leadership and mentors during a poster session event in Building 3 in the NASA Research Park.
Interns at Ames explain their research project posters to interested parties at the recent summer intern poster session.Photo credit: NASA Ames/Donald Richey Photo credit: NASA Ames/Donald Richey Mountain View Tech Showcase and Panel Highlight Local Innovations
Ames participated in a technology panel and exhibited at the two-day Mountain View Technology Showcase event July 24 and 25, held annually at the Mountain View Center for the Performing Arts. This event was a testament to the collaborative spirit of companies and partners from within the city and surrounding areas, all coming together to highlight the latest technology innovations. Chetan Kulkarni, Code T, shared his work on algorithm development, and Donald Durston, Code A, shared his work on supersonic aircraft, sonic booms, and the X-59. The panel provided the general public with a better understanding of the current and future state of unmanned airspace use in Mountain View, particularly the long history of air and space research and development, the myriad of uses, the challenges of managing use at different altitudes, what aspects our local companies are focusing on, and how they all fit together to help our everyday lives.
Speaking at the podium, Joseph Rios, Chief Technologist for the Aviation Systems Division at Ames, discusses Urban Air Mobility (UAM) and the current state of Unmanned Traffic Management (UTM). This was during the panel discussion about the future of airspace at the 9th Annual Technology Showcase in the Mountain View Center for the Performing Arts. Seated left to right: Robert Rose, Jim Tighe, and Alex Norman.Photo credit: NASA Ames/Donald Richey Chetan Kulkarni, right, sharing his work on technology maturation of Prognostics and Decision-Making (PDM) at the July 24 Technology Showcase.Photo credit: Mona Lisa Sharp Donald Durston, center, shares his work on supersonic aircraft, sonic boom, and the X-59 at the July 24 Technology Showcase.Photo credit: Mona Lisa Sharp Space Life Sciences Training Program (SLSTP) Interns Tour Ames
The Space Life Sciences Training Program (SLSTP) interns investigate the 24-foot diameter centrifuge of the Space Biosciences Artificial Gravity Lab in N239A during the recent tour at Ames on July 26.Photo credit: NASA Ames/Donald Richey Joshua Alwood of the Space Biosciences Artificial Gravity Lab, right, explains the 1.22-meter radius (8-foot diameter) centrifuge to the Space Life Sciences Training Program (SLSTP) interns in N239A during their tour on July 26.Photo credit: NASA Ames/Donald Richey Surfing NASA’s Internet of Animals: Satellites Study Ocean Wildlife
Anchoring the boat in a sandbar, research scientist Morgan Gilmour steps into the shallows and is immediately surrounded by sharks. The warm waters around the tropical island act as a reef shark nursery, and these baby biters are curious about the newcomer. They zoom close and veer away at the last minute, as Gilmour slowly makes her way toward the kaleidoscope of green sprouting from the island ahead.
An aerial view of Palmyra Atoll, where animal tracking data now being studied by NASA’s Internet of Animals project was collected using wildlife tags by partners at The Nature Conservancy, the U.S. Geological Survey, the National Oceanic and Atmospheric Administration, and several universities.Photo credit: The Nature Conservancy/Kydd Pollock Gilmour, a scientist at NASA’s Ames Research Center in California’s Silicon Valley, conducts marine ecology and conservation studies using data collected by the U.S. Geological Survey (USGS) from animals equipped with wildlife tags. Palmyra Atoll, a United States marine protected area, provides the perfect venue for this work.
A collection of roughly 50 small islands in the tropical heart of the Pacific Ocean, the atoll is bursting with life of all kinds, from the reef sharks and manta rays circling the shoreline to the coconut crabs climbing palm branches and the thousands of seabirds swooping overhead. By analyzing the movements of dolphins, tuna, and other creatures, Gilmour and her collaborators can help assess whether the boundaries of the marine protected area surrounding the atoll actually protect the species they intend to, or if its limits need to shift.
Launched in 2020 by The Nature Conservancy and its partners – USGS, NOAA (National Oceanic and Atmospheric Administration), and several universities – the project team deployed wildlife tags at Palmyra in 2022, when Gilmour was a scientist with USGS.
Now with NASA, she is leveraging the data for a study under the agency’s Internet of Animals project. By combining information transmitted from wildlife tags with information about the planet collected by satellites – such as NASA’s Aqua, NOAA’s GOES (Geostationary Operational Environmental Satellite) satellites, and the U.S.-European Jason-3 – scientists can work with partners to draw conclusions that inform ecological management.
The Palmyra Atoll is a haven for biodiversity, boasting thriving coral reef systems, shallow waters that act as a shark nursery, and rich vegetation for various land animals and seabirds. In the Landsat image above, a small white square marks the research station, where scientists from all over the world come to study the many species that call the atoll home.Photo credit: NASA/Earth Observatory Team “Internet of Animals is more than just an individual collection of movements or individual studies; it’s a way to understand the Earth at large,” said Ryan Pavlick, then Internet of Animals project scientist at NASA’s Jet Propulsion Laboratory in Southern California, during the project’s kickoff event.
The Internet of Animals at Palmyra
“Our work at Palmyra was remarkably comprehensive,” said Gilmour. “We tracked the movements of eight species at once, plus their environmental conditions, and we integrated climate projections to understand how their habitat may change. Where studies may typically track two or three types of birds, we added fish and marine mammals, plus air and water column data, for a 3D picture of the marine protected area.”
Tagged Yellowfin Tuna, Grey Reef Sharks, and Great Frigatebirds move in and out of a marine protected area (blue square), which surrounds the Palmyra Atoll (blue circle) in the tropical heart of the Pacific. These species are three of many that rely on the atoll and its surrounding reefs for food and for nesting.Photo credit: NASA/Lauren Dauphin Now, the NASA team has put that data into a species distribution model, which combines the wildlife tracking information with environmental data from satellites, including sea surface temperature, chlorophyll concentration, and ocean current speed. The model can help researchers understand how animal populations use their habitats and how that might shift as the climate changes.
Preliminary results from Internet of Animals team show that the animals tracked are moving beyond the confines of the Palmyra marine protected area. The model identified suitable habitats both in and around the protected zone – now and under predicted climate change scenarios – other researchers and decisionmakers can utilize that knowledge to inform marine policy and conservation.
Research scientist Morgan Gilmour checks on a young great frigatebird in its nest. The marine protected area around Palmyra Atoll protects these birds’ breeding grounds.Photo credit: UC Santa Barbara/Devyn Orr Following a 2023 presidential memorandum, NOAA began studying and gathering input on whether to expand the protected areas around Palmyra and other parts of the Pacific Remote Islands Marine National Monument. Analysis from NASA’s Internet of Animals could inform that and similar decisions, such as whether to create protected “corridors” in the ocean to allow for seasonal migrations of wildlife. The findings and models from the team’s habitat analysis at Palmyra also could help inform conservation at similar latitudes across the planet.
Beyond the Sea: Other Internet of Animals Studies
Research at Palmyra Atoll is just one example of work by Internet of Animals scientists.
Claire Teitelbaum, a researcher with the Bay Area Environmental Research Institute based at NASA Ames, studies avian flu in wild waterfowl, investigating how their movement may contribute to transmission of the virus to poultry and other domestic livestock.
Teams at Ames and JPL are also working with USGS to create next-generation wildlife tags and sensors. Low-power radar tags in development at JPL would be lightweight enough to track small birds. Ames researchers plan to develop long-range radio tags capable of maximizing coverage and transmission of data from high-flying birds. This could help researchers take measurements in hard-to-reach layers of the atmosphere.
With the technology brought together by the Internet of Animals, even wildlife can take an active role in the study of Earth’s interacting systems, helping human experts learn more about our planet and how best to confront the challenges facing the natural world.
To learn more about the Internet of Animals visit: https://www.nasa.gov/nasa-earth-exchange-nex/new-missions-support/internet-of-animals/
The Internet of Animals project is funded by NASA and managed at NASA’s Jet Propulsion Laboratory in Southern California. The team at NASA’s Ames Research Center in California’s Silicon Valley is part of the NASA Earth Exchange, a Big Data initiative providing unique insights into Earth’s systems using the agency’s supercomputers at the center. Partners on the project include the U.S. Geological Survey, The Nature Conservancy, the National Oceanic and Atmospheric Administration, the Yale Center for Biodiversity and Global Change, Stanford University, University of Hawaii, University of California Santa Barbara, San Jose State University, University of Washington, and the Max Planck Institute for Animal Behavior.
NASA’s Speakers Bureau Unveils New “NASA Engages” Tool
The NASA Speakers Bureau is excited to share a new online tool called NASA Engages! The tool matches the NASA workforce’s individual interests and expertise with internal and external engagement activities. The tool will allow us to engage learners and the public in NASA’s mission through sharing individual experiences, expertise, and content! This tool will help facilitate the teaching that our NASA Experts are eager to share with the public and we want to help expand learning for the public in the fields of math, science and space exploration.
Photo credit: NASA You can join the more than 1,000 other NASA employees in sharing your passion for space exploration with communities and students. You’ll also be guided through registering your profile and a demonstration of the new tool’s functionalities.
Thousands of students, employees, organizations and industry leaders have been connected with NASA subject matter experts. We have heard that our speakers have enriched lives and helped people of all ages to become interested in math, science and space exploration. We want to continue to be a positive influence in the world.
Ames Coded Structures Lab demonstrates SOLL-E Robot at the Roverscape
The Ames Coded Structures Lab demonstrates the operation of the Automated Reconfigurable Mission Adaptive Digital Assembly Systems (ARMADAS) at the Roverscape. This is a close-up view of the Scaling Omni-directional Lattice Locomoting Explorer (SOLL-E, pronounced “Sully”) robot that moves on the exterior of the structure, carries and places the building elements, called voxels.
Photo credit: NASA/Ames Don Richey
NASA Display Draws Comic-Con Attendee Fans and Space Enthusiasts Alike
Ames’ Office of Communications, in collaboration with Johnson Space Center participated in the San Diego Comic-Con on July 26. Attendees were drawn to the NASA booth displays, eager to learn about NASA’s current and future missions.
Comic-Con attendees visit the NASA booth and participate in NASA-led activities.Photo credit: photo by Swati Mohan Left to right: Jonas Dino, Code DO and Lara Lash, Sofia Tafolla, Avi Gileadi and Miranda Poltorak from Code AOX working
in the NASA booth display area at the Comic-Con in San Diego.Photo credit: photo by Swati Mohan NASA display at San Diego Comic-ConPhoto credit: photo by Swati Mohan NASA Community College Aerospace Scholars (NCAS) Tour Ames
William Warmbrodt gives an overview of the operation of the National Full-Scale Aerodynamics Complex (NFAC) in the test section of the 80-by-120-foot wind tunnel, building N211B, to the NASA Community College Aerospace Scholars (NCAS).Photo credit: NASA/Ames Donald Richey Brian Barrientez II, right, at the tower control workstation, leads a presentation to the NASA Community College Aerospace Scholars (NCAS) in FutureFlight Central’s (FFC) Tower, in building N262.Photo credit: NASA/Ames Donald Richey In Memoriam…
NASA Science Instrument Development Manager Alan Rhodes Passes Away
Alan Rhodes passed away on June 27 at his home in St. Louis, Missouri. Alan came to Ames in 2016 when he joined the Stratospheric Observatory for Infrared Astronomy (SOFIA) program, our now retired flying telescope, and managed science instrument development efforts through 2020. He then joined the Advanced Composite Solar Sail System (ACS3) mission, a CubeSat that uses solar sails powered by the Sun, as the mission’s lead systems engineer.
Manager, Alan Rhodes in the Instrument Lab for SOFIA’s EXES instrument, working with the Echelon-Cros-Echelle Spectrograph. Photos taken for the Partnership for Public Service “Best Places to Work in the Federal Government” Instagram site.Photo credit: NASA Alan served as a project manager for most of his career. After graduating college, he worked for the Naval Undersea Warfare Center as an acquisition management specialist from 2001-2003. From 2003-2005, he was a foreign comparative test project manager and from 2005-2006, he was a senior analyst in integrated warfare systems for Stanley Associates. His first position with NASA was as a test director and project manager at Johnson Space Center in Houston from 2006-2011. Between 2012-2016, Alan worked as project manager for the US Corps of Engineers, the Small Business Innovation Research (SBIR) for the National Oceanographic and Atmospheric Administration (NOAA) and Bonneville Power Administration. He rejoined NASA in 2016.
Anyone who had the privilege of working with Alan can vouch for his enthusiasm. He believed in NASA’s mission and went out of his way to let colleagues know that he valued and appreciated them. He was genuinely excited to be involved in furthering our knowledge of space. He said at the time of the ACS3 launch in April 2024, “The hope is that the new technologies verified on this spacecraft will inspire others to use them in ways we haven’t even considered.”
NASA Protective Services lower the NASA flag to honor the life of Alan Rhodes in front of the Ames Administration building, N200 on July 31. Colleagues and family members shared memories of him during the ceremony.Photo credit: NASA/Ames Donald Richey Although Alan witnessed the launch of the CubeSat and watched it meet its milestones, unfortunately, he did not get to see the final test. In the upcoming weeks, we can all watch in anticipation as ACS3 unfurls its sails in space and tests the novel lightweight flexible composite booms. Cameras mounted on the spacecraft will capture this spectacular feat to share with the world.
Alan made a big impact in a relatively short time and his untimely death is a reminder that no one knows how much time we have on Earth. A flag ceremony was held at Ames to honor Alan on July 31, in front of the N200 flagpoles.
Alan appreciated the importance of sharing NASA’s story so others can learn and build upon it. It’s important for us to never take one day for granted. Our work at NASA makes a difference to people today and the agency’s impact will benefit generations to come.
Former Ames Deputy Director, Aeronautical Engineer Vic Peterson Passes
Victor (Vic) Lowell Peterson, age 90, passed away at his home in Los Altos, California on July 10. Vic was active and engaged up until the very end. He learned of his extensive cancers days before his death. He lived an amazing, full, and rich life.
Vic was born June 11, 1934 in Saskatoon, Saskatchewan, Canada to Edwin and Ruth (McKeeby) Peterson. His father served as headmaster of several deaf and blind schools through Canada and Montana before the family moved to Portland, Oregon. Vic was the last surviving member of his family as his older and younger brothers predeceased him.
Victor L. Peterson, former Ames deputy director and aeronautical engineer. Vic was an avid midget and IndyCar race fan from the age of 12. He met a midget car owner on his paper route and was soon working as a pit crew member—the beginning of his love for engineering. They always referred to him as their son and introduced him to legendary race car drivers.
Throughout high school, Vic worked at the Davidson Bakery where the owner wanted to send him to baking school with the intent of taking over the business. He played trombone in the high school band, with a subset of the band playing dance gigs.
His love, however, was aeronautical engineering. He attended Oregon State University (1952 -1956) where he was part of the inaugural Aeronautical Engineering class. Vic was a member of Acacia Fraternity while at Oregon State. He earned his B.S. Aeronautical Engineering and was commissioned 2nd Lt. USAF upon graduation in 1956. He was honorably discharged from the USAF with rank of Captain after, as he put it, only having a desk job. Vic also earned an M.S. Aeronautics and Astronautics Sciences from Stanford University and an M.S. Management as an Alfred P. Sloan Fellow from Massachusetts Institute of Technology. He authored more than 50 technical publications and received numerous citations and awards, including the Presidential Rank Award of Distinguished Executive at the White House from President George H. W. Bush.
Vic was recruited to work at the National Advisory Committee for Aeronautics (NACA), Ames Aeronautical Laboratory, at Moffett Field, right out of college. That was the beginning of his long and illustrious career at NASA. He began as an aeronautical research intern, was soon promoted to aeronautical research engineer, and aerospace research scientist before moving into managerial roles: assistant chief, Hypersonic Aerodynamics branch; chief, Aerodynamics branch; Chief, Thermo and Gas Dynamics division; director of Astronautics; director of Astrophysics; and finally deputy director. Vic retired in 1992. He always spoke fondly of the people and his time at Ames Research Center. He often remarked that he was fortunate to have his dream job at the place he most wanted to work for his entire career.
Vic met Jacquie Hubbard at Oregon State. They married December 21, 1955. He is survived by his wife, Jacquie, of 68 years, his daughters Linda Fouquet and Janet Peterson, and son-in-law Sam Fouquet. His son, Victor Craig Peterson died in 2012. He had five grandchildren and four great-grandchildren. His family brought immense joy to him.
He designed and built the addition of their Los Altos home and completed an elaborate landscaping project after retirement. He enjoyed his home, gardening, investing, and staying connected with his fellow NASA retirees.
When asked what he did at work, Vic inevitably replied, “My day was a day like all days, filled with the events that make history.” And indeed it was. Vic Peterson was brilliant, committed, humble, and loving.
A Service of Remembrance and Thanksgiving Celebrating the Life of Victor L. Peterson will be held on Oct. 8, 2024, at Noon at Sunnyvale United Methodist Church, located at 535 Old San Francisco Road, Sunnyvale, California, 94086.
Former Chief Counsel at Ames Jack Glazer Passes
Jack H. Glazer, S.J.D., died on May 24, at his home, a historical landmark on Nob Hill conveyed as his gift to the University of California, San Francisco (UCSF). Predeceasing him on August 30, 2001, was his beloved and adored wife, Zelda d’Angleterre Glazer, whose funeral urn was interred with him at Home of Peace Cemetery in Colma, California. Additionally, her name and accomplishments have been memorialized by Jack both in the creation of a Chair on Brain Tumor Research established at UCSF and in the identity of the historical property transferred by gift to that institution on his wife’s name.
Distinguished career paths both in the U.S. Navy as a combat veteran and in his civilian pursuits as a lawyer were Jack’s lot in life. As to the Navy in 1945, at age 17, he left the South Bronx to enlist as an apprentice seaman, ultimately remaining through the years in the Ready Reserve and retiring from the Navy in 1988, after obtaining the rank of captain. Turning to his experiences as a member of the California and District of Columbia Bars, his more inviting assignments included service in Geneva Switzerland as legal counsel to the International Telecommunication Union, a United Nations specialized agency involved in the elaboration of the first multilateral treaties applicable to the legal regime of outer space.
After returning to the United States, Jack embarked in 1965, upon an enviable legal career spanning some 23 years as Chief Counsel at Ames Research Center, an assignment capped by an award of NASA’s Exceptional Service Medal. On his academic side in the law, he was armed with degrees ranging from the baccalaureate to the doctorate from Duke University, Georgetown, and U.C. Berkeley. Jack also was a recognized writer and adjunct professor in the emerging field of Space Law, a subject he taught at the Hastings College of the Law and other universities in the Bay Area.
Former Space Science & Astrobiology Division Manager Cora Millena Dies
Corazon (Cora) Millena passed away on June 26. Cora began her career at NASA in 1985 and was a member of the Ames community for 39 years. Her life story had a memorable connection to NASA and you’re encouraged to take a moment to read her personal essay.
Corazon (Cora) Millena Born in the Philippines, Cora was a fifth-grade student in 1960 when she learned about NASA’s Echo-1 communications satellite. Inspired by the launch, she hoped to one day immigrate to the United States and work for the space agency.
Cora worked hard to overcome many challenges in her life. She studied business administration in college and graduated from the Mapua Institutes of Technology in the Philippines. She finally realized her dream when she moved to San Jose with her family in 1975.
As a program manager in the Space Science and Astrobiology Division at Ames, Cora worked on the Cassini mission, the Mars Climate Modeling Center, and on the Stratospheric Observatory for Infrared Astronomy (SOFIA) program. She was also a longtime member of the Ames Asian American, Native Hawaiian, and Pacific Islander community.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.