Jump to content

How NASA’s Roman Space Telescope Will Illuminate Cosmic Dawn


Recommended Posts

  • Publishers
Posted
Artist's concept of the early universe
This artist’s concept shows how the universe might have looked when it was less than a billion years old, about 7 percent of its current age. Star formation voraciously consumed primordial hydrogen, churning out myriad stars at an unprecedented rate. NASA’s Nancy Grace Roman Space Telescope will peer back to the universe’s early stages to understand how it transitioned from being opaque to the brilliant starscape we see today.
NASA, ESA, and A. Schaller (for STScI)
audio-reader-band.jpg?w=1920

0:00 / 0:00

Today, enormous stretches of space are crystal clear, but that wasn’t always the case. During its infancy, the universe was filled with a “fog” that made it opaque, cloaking the first stars and galaxies. NASA’s upcoming Nancy Grace Roman Space Telescope will probe the universe’s subsequent transition to the brilliant starscape we see today –– an era known as cosmic dawn.

“Something very fundamental about the nature of the universe changed during this time,” said Michelle Thaller, an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Thanks to Roman’s large, sharp infrared view, we may finally figure out what happened during a critical cosmic turning point.”

Lights Out, Lights On

Shortly after its birth, the cosmos was a blistering sea of particles and radiation. As the universe expanded and cooled, positively charged protons were able to capture negatively charged electrons to form neutral atoms (mostly hydrogen, plus some helium). That was great news for the stars and galaxies the atoms would ultimately become, but bad news for light!

It likely took a long time for the gaseous hydrogen and helium to coalesce into stars, which then gravitated together to form the first galaxies. But even when stars began to shine, their light couldn’t travel very far before striking and being absorbed by neutral atoms. This period, known as the cosmic dark ages, lasted from around 380,000 to 200 million years after the big bang.

Then the fog slowly lifted as more and more neutral atoms broke apart over the next several hundred million years: a period called the cosmic dawn.

“We’re very curious about how the process happened,” said Aaron Yung, a Giacconi Fellow at the Space Telescope Science Institute in Baltimore, who is helping plan Roman’s early universe observations. “Roman’s large, crisp view of deep space will help us weigh different explanations.”

cosmic-dawn-thumbnail-v3-narrow-flip.jpg

0:00 / 0:00

Prime Suspects

It could be that early galaxies may be largely to blame for the energetic light that broke up the neutral atoms. The first black holes may have played a role, too. Roman will look far and wide to examine both possible culprits.

“Roman will excel at finding the building blocks of cosmic structures like galaxy clusters that later form,” said Takahiro Morishita, an assistant scientist at Caltech/IPAC in Pasadena, California, who has studied cosmic dawn. “It will quickly identify the densest regions, where more ‘fog’ is being cleared, making Roman a key mission to probe early galaxy evolution and the cosmic dawn.”

The earliest stars were likely starkly different from modern ones. When gravity began pulling material together, the universe was very dense. Stars probably grew hundreds or thousands of times more massive than the Sun and emitted lots of high-energy radiation. Gravity huddled up the young stars to form galaxies, and their cumulative blasting may have once again stripped electrons from protons in bubbles of space around them.

“You could call it the party at the beginning of the universe,” Thaller said. “We’ve never seen the birth of the very first stars and galaxies, but it must have been spectacular!”

But these heavyweight stars were short-lived. Scientists think they quickly collapsed, leaving behind black holes –– objects with such extreme gravity that not even light can escape their clutches. Since the young universe was also smaller because it hadn’t been expanding very long, hordes of those black holes could have merged to form even bigger ones –– up to millions or even billions of times the Sun’s mass.

Supermassive black holes may have helped clear the hydrogen fog that permeated the early universe. Hot material swirling around black holes at the bright centers of active galaxies, called quasars, prior to falling in can generate extreme temperatures and send off huge, bright jets of intense radiation. The jets can extend for hundreds of thousands of light-years, ripping the electrons from any atom in their path.

NASA’s James Webb Space Telescope is also exploring cosmic dawn, using its narrower but deeper view to study the early universe. By coupling Webb’s observations with Roman’s, scientists will generate a much more complete picture of this era.

So far, Webb is finding more quasars than anticipated given their expected rarity and Webb’s small field of view. Roman’s zoomed-out view will help astronomers understand what’s going on by seeing how common quasars truly are, likely finding tens of thousands compared to the handful Webb may find.

A black background with stars shining throughout that range in size and color from white to gold and almost orange.
This view from the James Webb Space Telescope contains more than 20,000 galaxies. Researchers analyzed 117 galaxies that all existed approximately 900 million years after the big bang. They focused on 59 galaxies that lie in front of quasar J0100+2802, an active supermassive black hole that acts like a beacon, located at the center of the image above appearing tiny and pink with six prominent diffraction spikes. The team studied both the galaxies themselves and the illuminated gas surrounding them, which was lit up by the quasar’s bright light. The observation sheds light on how early galaxies cleared the “fog” around them, eventually leading to today’s clear and expansive views.
NASA, ESA, CSA, Simon Lilly (ETH Zürich), Daichi Kashino (Nagoya University), Jorryt Matthee (ETH Zürich), Christina Eilers (MIT), Rob Simcoe (MIT), Rongmon Bordoloi (NCSU), Ruari Mackenzie (ETH Zürich); Image Processing: Alyssa Pagan (STScI), Ruari Macken

“With a stronger statistical sample, astronomers will be able to test a wide range of theories inspired by Webb observations,” Yung said.

Peering back into the universe’s first few hundred million years with Roman’s wide-eyed view will also help scientists determine whether a certain type of galaxy (such as more massive ones) played a larger role in clearing the fog.

“It could be that young galaxies kicked off the process, and then quasars finished the job,” Yung said. Seeing the size of the bubbles carved out of the fog will give scientists a major clue. “Galaxies would create huge clusters of bubbles around them, while quasars would create large, spherical ones. We need a big field of view like Roman’s to measure their extent, since in either case they’re likely up to millions of light-years wide –– often larger than Webb’s field of view.”

Roman will work hand-in-hand with Webb to offer clues about how galaxies formed from the primordial gas that once filled the universe, and how their central supermassive black holes influenced galaxy and star formation. The observations will help uncover the cosmic daybreakers that illuminated our universe and ultimately made life on Earth possible.

The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems, Inc in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.

Download high-resolution video and images from NASA’s Scientific Visualization Studio

By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Media contact:
Claire Andreoli
claire.andreoli@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
301-286-1940

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Video: 00:08:04 Space Debris: Is it a Crisis?
      The European Space Agency’s short documentary film ‘Space Debris: Is it a Crisis?’ on the state of space debris premiered at the 9th European Conference on Space Debris on 1 April 2025.
      Earth is surrounded by thousands of satellites carrying out important work to provide telecommunications and navigation services, help us understand our climate, and answer fundamental questions about the Universe.
      However, as our use of space accelerates like never before, these satellites find themselves navigating increasingly congested orbits in an environment criss-crossed by streams of fast-moving debris fragments resulting from collisions, fragmentations and breakups in space.
      Each fragment can damage additional satellites, with fears that a cascade of collisions may eventually render some orbits around Earth no longer useable. Additionally, the extent of the harm of the drastic increase in launches and number of objects re-entering our atmosphere and oceans is not yet known.
      So, does space debris already represent a crisis?
      The documentary explores the current situation in Earth’s orbits and explains the threat space debris poses to our future in space. It also outlines what might be done about space debris and how we might reach true sustainability in space, because our actions today will have consequences for generations to come.
       
      ESA’s Space Safety Programme
      ESA’s Space Safety Programme aims to safeguard the future of spaceflight and to keep us, Earth and our infrastructure on the ground and in space safe from hazards originating in space.
      From asteroids and solar storms to the human-made problem of space debris, ESA works on missions and projects to understand the dangers and mitigate them.
      In the longer term, to ensure a safe and sustainable future in space, ESA aims to establish a circular economy in space. To get there, the Agency is working on the technology development necessary to make in-orbit servicing and zero-debris spacecraft a reality.
      View the full article
    • By NASA
      From left to right, NASA Marshall engineers Carlos Diaz and John Luke Bili, U.S. Naval Research Laboratory mechanical engineer contractor Eloise Stump, and Marshall engineers Tomasz Liz, David Banks, and Elise Doan observe StarBurst in the cleanroom environment before it’s unboxed from its shipping container. The cleanroom environment at Marshall is designed to minimize contamination and protect the observatory’s sensitive instruments. Image Credit: NASA /Daniel Kocevski   StarBurst, a wide-field gamma ray observatory, arrived at NASA’s Marshall Space Flight Center in Huntsville, Alabama, March 4 for environmental testing and final instrument integration. The instrument is designed to detect the initial emission of short gamma-ray bursts, a key electromagnetic indicator of neutron star mergers.
      “Gamma-ray bursts are among the most powerful explosions in the universe, and they serve as cosmic beacons that help us understand extreme physics, including black hole formation and the behavior of matter under extreme conditions,” said Dr. Daniel Kocevski, principal investigator of the StarBurst mission at NASA Marshall.
      According to Kocevski, neutron star mergers are particularly exciting because they produce gamma-ray bursts and gravitational waves, meaning scientists can study these events using two different signals – light and ripples in space time.
      Starburst Principal Investigator Dr. Daniel Kocevski, left, and Integration and Test Engineer Elise Doan, right, pose with the StarBurst instrument after it was unboxed in the cleanroom environment at NASA Marshall. The Naval Research Lab transferred the instrument to NASA in early March.Image Credit: NASA/Davy Haynes The merging of neutron stars forges heavy elements such as gold and platinum, revealing the origins of some of Earth’s building blocks.
      “By studying these gamma-ray bursts and the neutron star mergers that produce them, we gain insights into fundamental physics, the origins of elements, and even the expansion of the universe,” Kocevski said. “Neutron star mergers and gamma-ray bursts are nature’s laboratories for testing our understanding of the cosmos.”
      StarBurst will undergo flight vibration and thermal vacuum testing at Marshall in the Sunspot Thermal Vacuum Testing Facility. These tests ensure it can survive the rigors of launch and harsh environment of space.
      Final instrument integration will happen in the Stray Light Facility, which is a specialized environment to help identify and reduce unwanted light in certain areas of the optical systems.
      The StarBurst Multimessenger Pioneer is a wide-field gamma-ray observatory designed to detect the initial emission of short gamma-ray bursts, important electromagnetic indicators of neutron star mergers. With an effective area over five times that of the Fermi Gamma-ray Burst Monitor and complete visibility of the unobscured sky, StarBurst will conduct sensitive observations. NASA/Daniel Kocevski StarBurst is a collaborative effort led by NASA’s Marshall Space Flight Center, with partnerships with the U.S. Naval Research Laboratory, the University of Alabama Huntsville, the Universities Space Research Association, and the UTIAS Space Flight Laboratory. StarBurst was selected for development as part of the NASA Astrophysics Pioneers program, which supports lower-cost, smaller hardware missions to conduct compelling astrophysics science.
      To learn more about StarBurst visit:
      https://science.nasa.gov/mission/starburst/
      Media Contact:
      Lane Figueroa
      Marshall Space Flight Center
      Huntsville, Alabama
      256.544.0034
      lane.e.figueroa@nasa.gov
      View the full article
    • By European Space Agency
      Image: Spying a spiral through a cosmic lens (Webb telescope image) View the full article
    • By European Space Agency
      The NASA/ESA/CSA James Webb Space Telescope has captured a beautiful juxtaposition of the nearby protostellar outflow known as Herbig-Haro 49/50 with a perfectly positioned, more distant spiral galaxy. Due to the close proximity of this Herbig-Haro object to Earth, this new composite infrared image of the outflow from a young star allows researchers to examine details on small spatial scales like never before. With Webb, we can better understand how the jet activity associated with the formation of young stars can affect the environment surrounding them.
      View the full article
  • Check out these Videos

×
×
  • Create New...