Members Can Post Anonymously On This Site
A Saturnian Summer
-
Similar Topics
-
By NASA
Learn Home NASA Summer Camp Inspires… Earth Science Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Stories Science Activation Highlights Citizen Science 2 min read
NASA Summer Camp Inspires Future Climate Leaders
From July 15-19, 2024, the Coastal Equity and Resilience Hub at the Georgia Institute of Technology collaborated with the University of Georgia (UGA) Marine Extension and Georgia Sea Grant to host a week-long NASA Sea Level Changemakers Summer Camp. The camp introduced 14 rising 7th-8th graders to how coastal areas are changing due to sea level rise. Set at the UGA Marine Education Center and Aquarium on Skidaway Island, the camp offered students hands-on activities and outdoor educational experiences, where they analyzed real data collected by NASA scientists and learned about community adaptations to flooding. Students interacted with experts from NASA’s Jet Propulsion Laboratory, UGA, and Georgia Tech, gaining insights into satellite observations, green infrastructure, environmental sensors, and careers related to sea level rise. The camp also included a visit to the Pin Point Heritage Museum, where students engaged with leaders from the historic Gullah Geechee community of Pin Point. The camp concluded with a boat trip to Wassaw Island, where students observed the effects of sea level rise on an undeveloped barrier island and compared these observations with earlier findings from urban environments. Funding from the NASA’s Science Activation Program and its Sea Level Education, Awareness, and Literacy (SEAL) team ensured that the camp was accessible to all students, eliminating financial barriers for groups traditionally underrepresented in STEM education.
“This investment from NASA has provided an amazing opportunity for youth in coastal Georgia to utilize NASA data and resources on a critical issue affecting their communities,” said Jill Gambill, executive director of the Coastal Equity and Resilience (CEAR) Hub at Georgia Tech. “They have more confidence now in their knowledge of sea level rise and potential solutions.”
The Sea Level Education, Awareness, and Literacy (SEAL) team is supported by NASA under cooperative agreement award number NNH21ZDA001N-SCIACT and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
Participants of the 2024 NASA Sea Level Changemakers Summer Camp in Savannah, GA Share
Details
Last Updated Sep 06, 2024 Editor NASA Science Editorial Team Location Jet Propulsion Laboratory Related Terms
Earth Science NOAA (National Oceanic and Atmospheric Administration) Opportunities For Students to Get Involved Science Activation Sea Level Rise Explore More
2 min read Leveraging Teacher Leaders to Share the Joy of NASA Heliophysics
Article
2 days ago
2 min read NASA Earth Science Education Collaborative Member Co-Authors Award-Winning Paper in Insects
Article
3 days ago
2 min read Co-creating authentic STEM learning experiences with Latino communities
Article
7 days ago
Keep Exploring Discover More Topics From NASA
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Perseverance Rover
This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…
Parker Solar Probe
On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
Juno
NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…
View the full article
-
By NASA
4 Min Read The Summer Triangle’s Hidden Treasures
The ‘Dumbbell nebula,’ also known as Messier 27, pumps out infrared light in this image from NASA’s Spitzer Space Telescope. Planetary nebulae are now known to be the remains of stars that once looked a lot like our sun. Credits:
NASA/JPL-Caltech/Harvard-Smithsonian CfA August skies bring the lovely Summer Triangle asterism into prime position after nightfall for observers in the Northern Hemisphere. Its position high in the sky may make it difficult for some to observe its member stars comfortably, since looking straight up while standing can be hard on one’s neck! While that isn’t much of a problem for those that just want to quickly spot its brightest stars and member constellations, this difficulty can prevent folks from seeing some of the lesser known and dimmer star patterns scattered around its informal borders. The solution? Lie down on the ground with a comfortable blanket or mat or grab a lawn or gravity chair and sit luxuriously while facing up. You’ll quickly spot the major constellations about the Summer Triangle’s three corner stars: Lyra with bright star Vega, Cygnus with brilliant star Deneb, and Aquila with its blazing star, Altair. As you get comfortable and your eyes adjust, you’ll soon find yourself able to spot a few constellations hidden in plain sight in the region around the Summer Triangle: Vulpecula the Fox, Sagitta the Arrow, and Delphinus the Dolphin! You could call these the Summer Triangle’s “hidden treasures” – and they are hidden in plain sight for those that know where to look!
Mid-August offers views of the Summer Triangle with stars Deneb, Vega and Altair in the constellations Cygnus, Lyra, Aquila respectively. Constellations Vulpecula, Sagitta, and Delphinus are also visible, along with some of jewels – namely Messier 27, Messier 71, Caldwell 42 and Caldwell 47. Stellarium Web Vulpecula the Fox is located near the middle of the Summer Triangle, and is relatively small, like its namesake. Despite its size, it features the largest planetary nebula in our skies: M27, aka the Dumbbell Nebula! It’s visible in binoculars as a fuzzy “star” and when seen through telescopes, its distinctive shape can be observed more readily – especially with larger telescopes. Planetary nebulae, named such because their round fuzzy appearances were initially thought to resemble the disc of a planet by early telescopic observers, form when stars similar to our Sun begin to die. The star will expand into a massive red giant, and its gases drift off into space, forming a nebula. Eventually the star collapses into a white dwarf – as seen with M27 – and eventually the colorful shell of gases will dissipate throughout the galaxy, leaving behind a solitary, tiny, dense, white dwarf star. You are getting a peek into our Sun’s far-distant future when you observe this object!
This spectacular NASA/ESA Hubble Space Telescope image shows a bright scattering of stars in the small constellation of Sagitta (the Arrow). This is the centre of the globular cluster Messier 71, a great ball of ancient stars on the edge of our galaxy around 13 000 light-years from Earth. M71 is around 27 light-years across. Globular clusters are like galactic suburbs, pockets of stars that exist on the edge of major galaxies. These clusters are tightly bound together by their gravitational attraction, hence their spherical shape and their name: globulus means “little sphere” in Latin. Around 150 such globular clusters are known to exist around our Milky Way, each one of them containing several hundred thousand stars. Messier 71 has been known for a long time, having been first spotted in the mid eighteenth century by Swiss astronomer Jean-Philippe de Cheseaux. Cheseaux discovered a number of nebulae in his career, and also spent much time studying religion: one posthumously published work attempted to derive the exact date of Christ’s crucifixion from astronomical events noted in the Bible. Despite being a familiar object, Messier 71’s precise nature was disputed until recently. Was it simply an open cluster, a loosely bound group of stars? This was for many years the dominant view. But in the 1970s, astronomers came to the view that it is in fact a relatively sparse globular cluster. The stars in Messier 71, as is usual in such clusters, are relatively old, at around 9 to 10 billion years, and consequently are low in elements other than hydrogen and helium. This picture was created from images taken with the Wide Field Channel of the Advanced Camera for Surveys on Hubble. It is a combination of images taken through yellow (F606W — coloured blue) and near-infrared (F814W — coloured red) filters. The exposure times were 304 s and 324 s respectively. The field of view is about 3.4 arcminutes across. ESA/Hubble and NASA Sagitta the Arrow is even smaller than Vulpecula – it’s the third smallest constellation in the sky! Located between the stars of Vulpecula and Aquila the Eagle, Sagitta’s stars resemble its namesake arrow. It too contains an interesting deep-sky object: M71, an unusually small and young globular cluster whose lack of a strong central core has long confused and intrigued astronomers. Your own views very likely won’t be as sharp or close as this. However, this photo does show the cluster’s lack of a bright, concentrated core, which led astronomers until fairly recently to classify this unusual cluster as an “open cluster” rather than as a “globular cluster.” Studies in the 1970s proved it to be a globular cluster after all – though an unusually young and small one! It’s visible in binoculars, and a larger telescope will enable you to separate its stars a bit more easily than most globulars; you’ll certainly see why it was thought to be an open cluster!
Delicate Delphinus the Dolphin appears to dive in and out of the Milky Way near Aquilla and Sagitta! Many stargazers identify Delphinus as a herald of the fainter water constellations, rising in the east after sunset as fall approaches. The starry dolphin appears to leap out of the great celestial ocean, announcing the arrival of more wonderful sights later in the evening. With a large telescope and dark skies, you can pick out globular clusters Caldwell 42 and Caldwell 47.
Want to hunt for more treasures? You’ll need a treasure map, and the Night Sky Network’s “Trip Around the Triangle” handout is the perfect guide for your quest!
Originally posted by Dave Prosper: August 2022
Last Updated by Kat Troche: April 2024
View the full article
-
By NASA
The summer months are usually a time for teachers to take a break from the classroom and enjoy some well-earned rest. But at NASA’s Johnson Space Center in Houston, two experienced educators dedicated their summer vacations to learning how to enrich their students’ science, technology, engineering, and mathematics (STEM) education and inspire them to achieve their dreams.
Johnson’s Office of STEM Engagement (OSTEM) welcomed Jerry “Denise” Dunn and Shawnda Folsom as full-time interns for the summer. Both women came to Johnson through the Oklahoma Space Grant Consortium, which not only supports students pursuing STEM careers but also provides curriculum enhancement and professional development opportunities for educators. Dunn and Folsom were invited to become interns after completing STELLAR, the consortium’s yearlong mentorship program that immerses educators in hands-on STEM-based activities for classroom application.
Denise Dunn (left) and Shawnda Folsom. For Dunn, a middle school special education teacher in the small town of Checotah, Oklahoma, participating in STELLAR opened several doors that ultimately led to her internship. Dunn works primarily with students who have severe and profound disabilities and is fiercely passionate about increasing their access to STEM education and opportunities.
“If you look at the research, there’s been a big push for STEM for everyone except kids with disabilities. The number of people with disabilities in STEM-related fields hasn’t changed in a decade,” she said. “We need to promote that more.”
Dunn suggested that she and her STELLAR colleagues support Challenge Air, a program that teaches children with disabilities about aviation and lets them co-pilot a plane. The STELLAR group set up activity tables at a Challenge Air event where kids could build rockets or make Moon craters and learn about space exploration. That experience inspired the Oklahoma Space Grant Consortium to create an annual STEM engagement event specifically for kids with disabilities and their families.
Denise Dunn (left) helps a family build a foam rocket at a Challenge Air event.Image courtesy of Denise Dunn Dunn subsequently attended the Space Exploration Educators Conference where she connected with Tracy Minish, a former Johnson employee with more than 30 years of experience in the Space Shuttle Program and Mission Control Center who is also legally blind. Minish met virtually with Dunn’s students to encourage them to pursue their dreams, then invited her to Johnson to learn about the accommodations and support NASA provides to employees with disabilities. Dunn used what she learned to create a teacher workshop that shared practical strategies for STEM special education. These efforts and the connections she made at Johnson paved the way for her internship.
“I want to know more about what NASA does to support its employees with disabilities. I also want to know more about those employees and their stories so that I can share that with my students,” she said. Dunn also appreciated connecting with Johnson’s No Boundaries Employee Resource Group because they have the power to provide representation for kids with disabilities.
“Kids with disabilities are just natural problem solvers and they have unique perspectives, and they need to see their value,” she said. “And NASA – what a great place for them to see that.”
For Folsom, an elementary-level science and social studies teacher for Velma-Alma Public Schools, the internship offer came at a time of personal and professional change. In addition to planning her upcoming wedding and a move, juggling her kids’ schedules, and pursuing a master’s degree in education, Folsom was also preparing to take on a new, school district-wide role. “I am ecstatic to take on a new challenge – building, implementing, and teaching a comprehensive STEM program for students from pre-kindergarten through 12th grade,” she said. She saw the internship as a chance to immerse herself in NASA’s work and bring new opportunities for STEM learning and engagement back to her students. “I was not aware of all of the student design challenges that NASA has, so I am super excited to share these and have future classes participate in them,” she said.
Shawnda Folsom leads an Office of STEM Engagement (OSTEM) activity for youth during Bring Youth to Work Day at NASA’s Johnson Space Center in Houston. Image courtesy of Shawnda Folsom Folsom is also determined to see more NASA interns from her school district, which is extremely rural and qualifies for Title I support. “My goal is to shake the right hands and make the connections that will allow me to set my students up for their future, which hopefully will include an internship for many of them,” she said. “I want my ‘small town’ mindset students to realize how much talent and potential they each have. I want them to know they can do anything.” She noted that her own story – which involves a nontraditional career path and now, at 41, an internship – could help inspire her students.
Together with their OSTEM mentors and teammates, Dunn and Folsom spent their summer creating hands-on activities for children who attended events like Johnson’s Bring Youth to Work Day and the Dorothy Vaughan Center in Honor of the Women of Apollo dedication. They prepared an aerodynamics lesson plan and STEM activity for the MLB Players STEM League Global Championship in July, supported and participated in NASA-led professional development programs for teachers, and worked on a new camp experience resource to complement OSTEM’s ‘First Woman’ camp experience.
Denise Dunn and Shawnda Folsom present a remote sensing activity for local scouts who attended the Dorothy Vaughan Center in Honor of the Women of Apollo event at Johnson Space Center on July 19, 2024. NASA/Robert Markowitz Both women look forward to returning to their schools later this month and to sharing what they learned with their students.
“I want to expose my students to higher-level thinking and new STEM challenges,” said Folsom. “I want them to have those ‘a ha’ moments that will possibly launch their lives down a path they never fathomed could happen.”
“This internship has made me more aware of opportunities, not only to continue to advocate for my students, but for myself,” Dunn said. “Keep going. Keep dreaming.”
View the full article
-
By NASA
5 Min Read NASA Returns to Arctic Studying Summer Sea Ice Melt
NASA's Gulfstream III aircraft taxis on the runway at Pituffik Space Base as it begins one of its daily science flights for the ARCSIX mission. Credits: NASA/Gary Banziger What happens in the Arctic doesn’t stay in the Arctic, and a new NASA mission is helping improve data modeling and increasing our understanding of Earth’s rapidly changing climate. Changing ice, ocean, and atmospheric conditions in the northernmost part of Earth have a large impact on the entire planet. That’s because the Arctic region acts like Earth’s air conditioner.
Much of the Sun’s energy is transported from tropical regions of our planet by winds and weather systems into the Arctic where it is then lost to space. This process helps cool the planet.
The NASA-sponsored Arctic Radiation Cloud Aerosol Surface Interaction Experiment (ARCSIX) mission is flying three aircraft over the Arctic Ocean north of Greenland to study these processes. The aircraft are equipped with instruments to gather observations of surface sea ice, clouds, and aerosol particles, which affect the Arctic energy budget and cloud properties. The energy budget is the balance between the energy that Earth receives from the Sun and the energy the Earth loses to outer space.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
This highlight video gives viewers a front row seat to a typical day on the ARCSIX mission from Pituffik Space Base as NASA's research scientists, instrument operators, and flight crews fly daily routes observing sea ice and clouds 750 miles north of the Arctic Circle in Greenland.NASA/Gary Banziger “More sea ice makes that air conditioning effect more efficient. Less sea ice lessens the Arctic’s cooling effect,” says Patrick Taylor, a climate scientist at NASA’s Langley Research Center in Hampton, Virginia. “Over the last 40 years, The Arctic has lost a significant amount of sea ice making the Arctic warm faster. As the Arctic warms and sea ice melts, it can cause ripple effects that impact weather conditions thousands of miles away, how fast our seas are rising, and how much flooding we get in our neighborhoods.”
As the Arctic warms and sea ice melts, it can cause ripple effects…thousands of miles away.
Patrick Taylor
NASA Climate Research Scientist
The first series of flights took place in May and June as the seasonal melting of ice started. Flights began again on July 24 during the summer season, when sea ice melting is at its most intense.
“We can’t do this kind of Arctic science without having two campaigns,” said Taylor, the deputy science lead for ARCSIX. “The sea ice surface in the spring was very bright white and snow covered. We saw some breaks in the ice. What we will see in the second campaign is less sea ice and sea ice that is bare, with no snow. It will be covered with all kinds of melt ponds – pooling water on top of the ice – that changes the way the ice interacts with sunlight and potentially changes how the ice interacts with the atmosphere and clouds above.”
Sea ice and the snow on top of the ice insulate the ocean from the atmosphere, reflecting the Sun’s radiation back towards space, and helping to cool the planet. Less sea ice and darker surfaces result in more of the Sun’s radiation being absorbed at the surface or trapped between the surface and the clouds.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
A pilot's view of Arctic sea ice from NASA's P-3 Orion aircraft during NASA's ARCSIX airborne science mission flights in June.NASA/Gary Banziger Understanding this relationship, and the role clouds play in the system, will help scientists improve satellite data and better predict future changes in the Arctic climate.
“This unique team of pilots, engineers, scientists, and aircraft can only be done by leveraging expertise from multiple NASA centers and our partners,” said Linette Boisvert, cryosphere lead for the mission from NASA’s Space Flight Center in Greenbelt, Maryland. “We gathered great data of the snow and ice pre-melt and at the onset of melt. I can’t wait to see the changes at the height of melt as we measure the same areas covered with melt ponds.”
NASA partnered with the University of Colorado Boulder for the ARCSIX mission, and the research team found some surprises in their early data analysis from the spring campaign. One potential discovery is something Taylor is calling a “sea ice sandwich”, when a younger layer of sea ice is caught in between two layers of older sea ice. Scientists also found more drizzle within the clouds than expected. Both observations will need further investigating once the data is fully processed.
A research scientist monitors data measurements in-flight during the spring campaign of the ARCSIX mission.NASA/Gary Banziger “A volcano erupted in Iceland, and we believe the volcanic aerosol plume was indicated by our models four days later,” Taylor said. “Common scientific knowledge tells us volcanic particles, like ash and sulfate, would have already been removed from the atmosphere. More work needs to be done, but our initial results suggest these particles might live in the atmosphere much longer than previously thought.”
Previous studies suggest that aerosol particles in clouds can influence sea ice melt. Data collected during ARCSIX’s spring flights showed the Arctic atmosphere had several aerosol particle layers, including wildfire smoke, pollution, and dust transported from Asia and North America.
“We got everything we hoped for and more in the first campaign,” Taylor added. “The data from this summer will help us better understand how clouds and sea ice behave. We’ll be able to use these results to improve predictive models. In the coming years, scientists will be able to better predict how to mitigate and adapt to the rapid changes in climate we’re seeing in the Arctic.”
Read More ESPO.NASA.gov
AIR.LARC.NASA.gov
NASA.gov/Earth
Share
Details
Last Updated Jul 26, 2024 EditorCharles G. HatfieldContactCharles G. Hatfieldcharles.g.hatfield@nasa.govLocationLangley Research Center Related Terms
Earth Airborne Science Goddard Space Flight Center Ice & Glaciers Langley Research Center Sea Ice Wallops Flight Facility Explore More
4 min read NASA Mission Flies Over Arctic to Study Sea Ice Melt Causes
Article 2 months ago 5 min read Antarctic Sea Ice Near Historic Lows; Arctic Ice Continues Decline
Article 4 months ago 4 min read NASA Ice Scientists Take Flight from Greenland to Study Melting Arctic Ice
Article 2 years ago View the full article
-
By NASA
More than 100 interns supported operations at NASA’s Johnson Space Center in Houston this summer, each making an important impact on the agency’s mission success. Get to know seven stellar interns nominated by their mentors for their hard work and outstanding contributions.
Stella Alcorn stands inside the Orion mockup within Johnson Space Center’s Space Vehicle Mockup Facility. Stella Alcorn
Assignment: Engineering Directorate, Guidance, Navigation, and Control Autonomous Flight Systems Branch, Orion Program
Education: Aeronautical and Astronautical Engineering, Purdue University; graduating May 2026
Proudest internship accomplishment: Learning a new software program and applying topics I learned in school to develop a dynamic overlay display prototype for Orion Rendezvous, Proximity Operations, and Docking. My eagerness to learn and support from my mentor and colleagues has allowed me to make great progress on writing code to enable new display prototyping capabilities to support future Artemis missions.
Important lesson learned: Ask questions and engage with coworkers because you don’t gain valuable skills or experience without putting yourself out there. It can be nerve-wracking to collaborate with new people, but I have learned that taking initiative opens a gateway of opportunities.
Advice for incoming interns: Get to know other interns, go to NASA events, don’t be afraid to reach out or ask questions to your mentor, peers, or superiors (even if they’re not in your office or branch). This internship is a privilege, and you should take advantage of all available opportunities. Make connections and learn, but also have fun!
Laila Deshotel meets NASA astronauts Zena Cardman and Jessica Watkins. Laila Deshotel
Assignment: Safety and Mission Assurance Directorate, Space Habitation Systems Division, Computer Safety and Software Assurance Branch
Education: Mechanical Engineering, University of Texas at San Antonio; graduating 2026
Proudest internship accomplishment: Being of service to the International Space Station and Gateway Programs. I contributed to JAXA’s (Japan Aerospace Exploration Agency) unmanned cargo vehicle, the HTV-X, as a Computer-Based Control Systems (CBCS) safety reviewer. This involves understanding CBCS requirements, reviewing hazard reports in the given safety data package, and attending safety review panels. I am also assisting with the software safety and assurance for Gateway.
Important lesson learned: This term allowed me to see the results of taking initiative and networking with others for professional development outlets. When you aren’t stepping outside of your comfort, you don’t allow any room for further improvement.
Advice for incoming interns: Channel your passion for space into productive work by taking initiative and staying organized. Network actively, seek feedback, embrace learning opportunities, be adaptable, and maintain a positive attitude to make the most of your internship and pave the way for a successful career.
Hunter Kindt during a tour of the Mission Control Center at Johnson Space Center. Hunter Kindt
Assignment: Safety and Mission Assurance Directorate, Space Habitation Systems Division, Computer Safety and Software Assurance Branch
Education: Mechanical Engineering, University of Wyoming; graduating December 2024
Proudest internship accomplishment: I am performing a hazard analysis on a spacesuit for armadillos for my exit presentation project. This was inspired by my “Texas to-do list” for the summer, which included seeing an armadillo. I also love iced coffee, and, for fun, I created a cartoon of an armadillo in a spacesuit drinking iced coffee. All of us at the safety review panel I was supporting had a good laugh about it, and it led to a conversation about the logistics of an armadillo in a spacesuit. This project demonstrates my ability to apply the knowledge I have learned during my internship, specifically in safety, to any situation accurately.
Favorite Johnson experience: On a professional level, it was the ability to work with JAXA personnel during the safety review panel for their new HTV-X. Working and building connections with international partners is an experience I will never forget! On a personal level, it was touring the Mission Control Center and seeing the sun rise and set live from the International Space Station!
Advice for incoming interns: Say yes to any opportunity you are presented with.
Mia Garza speaks to Johnson Space Center employees and their family members during a launch viewing event for NASA’s Boeing Crew Flight Test. Mia Garza
Assignment: Office of Communications
Education: Marketing, University of Houston’s Bauer School of Business; graduating December 2024
Proudest internship achievement: My intern project of creating and executing an employee engagement plan for NASA’s Boeing Crew Flight Test (CFT). I worked with two other interns to create a unique plan to get the Johnson workforce excited about the CFT launch. We created custom crew drinks with RoyalTEA & Coffee Co., held a crew sendoff event which also included a poster decorating party for employees, hosted CFT booths at center-wide events, and hung ‘Godspeed, Suni and Butch’ banners around campus. We ended the project with a fun viewing event for employees and their families.
Favorite Johnson experience: Planning the building 12 dedication that happened on July 19. The tasks have varied between planning the seating chart, writing scripts, and helping create the run of show for the event. But getting to experience the planning process of this event and seeing it come to life has been a surreal experience.
Important lesson learned: The true power of teamwork. It takes a village to accomplish all of the great things that happen here.
Yosefine Santiago-Hernandez poses for a photo with two spacesuits. Yosefine Santiago-Hernandez
Assignment: Safety and Mission Assurance Directorate, Space Habitation Systems Division, Computer Safety and Software Assurance Branch
Education: Mechanical Engineering, University of Puerto Rico-Mayaguez; graduating May 2027
Proudest internship accomplishment: Serving as lead representative for CBCS in a safety review panel of an International Space Station payload.
Favorite Johnson experience: Working while surrounded by space history. There is always something going on, and something to see. It has been incredible to tour places like the Mission Control Center, Neutral Buoyancy Laboratory, and vacuum chambers. Also, it was pretty cool to meet an astronaut from my home country, Puerto Rico.
Important lesson learned: To persevere and step out of my comfort zone. I am working on concepts I have not worked on previously and are not taught in the classroom, therefore it has been a challenge to learn about them and contribute to the work. I took this challenge with a positive attitude and have been able to gain further understanding of systems engineering and CBCS and complete my tasks.
Courtney Thompson during a tour of Johnson Space Center’s Space Vehicle Mockup Facility. Courtney Thompson
Assignment: Center Operations Directorate, Logistics Division and Director’s Office
Education: Supply Chain Management, University of Nebraska-Lincoln; graduated December 2023
Proudest internship achievement: Getting here! Working at NASA was always the dream, though it didn’t seem like that was going to happen for me. I went back to school as a nontraditional business student a few years ago. I thought that would work against me but rolled the dice and here I am. Both my spring and summer internship mentors have been incredibly supportive during my time here. Temporary or not, this has been one of the best experiences of my life.
Important lesson learned: Remember what we are a part of. There are so many amazing things humanity has accomplished; many of those things are right here at NASA. Tour the facilities, ask questions, watch the launches, and celebrate and share with your friends. We are so lucky to get to witness these things up close and be a part of that history.
Advice for incoming interns: Always ask questions. Someone else probably has that question, too, or has never thought of things that way. It also helps show initiative and gets people to learn your name. Have a crazy new idea for something? Ask if it’s been done before or if it’s even feasible. And if they love the idea, you might just find more people to help make it happen.
Luis Valdez during a tour of Johnson Space Center’s Space Vehicle Mockup Facility. Luis Valdez
Assignment: Artificial Intelligence/Machine Learning – Software Development for Decision Intelligence Capability, Office of the Chief Information Officer’s Information, Data, and Analytics Services Team
Education: Computer Science, Texas A&M University; graduating May 2026
Proudest internship achievement: I’m proud of how much I’ve been able to learn and get done as the only intern on my project. It was pretty daunting at first, but I also saw it as an opportunity to show what I have to offer. Also, networking with other interns, civil servants, and even other companies like Google has been a dream come true.
Important lesson learned: Everything always changes. At the beginning of my internship, there was no clear path for me to take to achieve our objective, so it was all up to me to make the vision come to life. If something wasn’t working out, or if the customer wanted something different that wasn’t possible, I changed my methods to make it possible.
Advice for incoming interns: Get involved. Let yourself integrate fully into this internship. It’s a once-in-a-lifetime experience and working at NASA has been the dream of millions of people so make sure you take it all in. Also, connect with your mentor! They have so much to offer, and they truly want the best for you.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.