Jump to content

Sols 4253-4254: Pit Stop for Contact Science


NASA

Recommended Posts

  • Publishers

2 min read

Sols 4253-4254: Pit Stop for Contact Science

https-mars-nasa-gov-msl-raw-images-proj-
This image was taken by Front Hazard Avoidance Camera (Front Hazcam) onboard NASA’s Mars rover Curiosity on Sol 4251 (2024-07-22 00:02:59 UTC

Earth planning date: Monday, July 22, 2024

Last week we wrapped up activities at Fairview Dome and started heading south towards our next potential drill location in the Upper Gediz Vallis ridge campaign. We had about a 29-meter (about 95 feet) drive over the weekend, which set us up nicely for contact science and remote sensing today.

Today’s two-sol plan includes APXS and MAHLI on a gray rock named “Discovery Pinnacle” to assess variations in bedrock chemistry and compare it to what we have seen recently. We also planned ChemCam LIBS on “Miguel Meadow” to evaluate the typical bedrock in our workspace, as seen in the above image from the front Hazcam. The plan also includes a Mastcam mosaic covering the large patch of light-toned rocks in front of the rover to look for variations in lithology. Two ChemCam long-distance RMIs are also planned to evaluate the stratigraphy exposed by a channel cut into the Gediz Vallis ridge deposit, and to look more closely at a well-laminated dark-toned boulder on the channel floor. Then Curiosity will drive about 16 meters (about 52 feet) farther south, and will take post-drive imaging to help us evaluate another patch of light-toned bedrock in the next plan. 

In addition to targeted remote sensing, today’s plan includes observations of atmospheric opacity, searching for dust devils, an autonomously selected ChemCam AEGIS target, and standard DAN and REMS activities.

We’re all curious to see what Wednesday’s workspace will hold as we start thinking about the next place to drill! Meanwhile, much of the science team is gathered in Pasadena, California, this week at the Tenth International Conference on Mars, sharing lots of exciting results from the mission thus far. Looking forward to what comes next!

Written by Lauren Edgar, Planetary Geologist at USGS Astrogeology Science Center

Share

Details

Last Updated
Jul 23, 2024

Related Terms

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
      Sols 4300-4301: Rippled Pages
      NASA’s Mars rover Curiosity prepares for a thorough examination of the unusual, dark “Tungsten Hills” rocks in front of it, studying these rugged boulders covered in paper-thin sedimentary layers, some of which contain intriguing ripple structures that may have formed in running water or windblown sand. This image was taken by Left Navigation Camera aboard Curiosity on Sol 4298 — Martian day 4,298 of the Mars Science Laboratory mission — on Sept. 8, 2024, at 06:35:57 UTC. NASA/JPL-Caltech Earth planning date: Monday, Sept. 9, 2024
      With today’s plan, Curiosity completes its most southerly planned exploration of the Gediz Vallis channel. From here, our rover will head north and climb out of the channel to explore terrain to the west. Our planned drive to the “Tungsten Hills” rocks, named for a famous mining district near Bishop, California, completed successfully over the weekend, placing a pile of unusual dark rocks within our workspace. Curiosity is currently in the “Bishop” quadrangle on our map, so all targets in this area of Mount Sharp are named after places in the Sierra Nevada and Owens Valley of California. On sols 4300-4301, Curiosity will perform a thorough examination of these rugged boulders, which are covered in paper-thin sedimentary layers like the pages of a book (see image). Some layers have intriguing ripple structures that may have formed in running water or windblown sand. These features are the prime targets for contact science and remote observation at this location.
      On Sol 4300, Curiosity will obtain ChemCam laser spectra and Mastcam imagery on a part of the closest plate-like rock called “Bonita Flat,” after a high valley above the southern Kern River canyon in Sequoia National Forest. ChemCam will also obtain telescopic views of a section of the Gediz Vallis channel banks with its RMI camera. Mastcam will take a mosaic of the upper reaches of the channel, then turn its cameras on the interesting bedrock of “Coffeepot Canyon,” honoring a ravine along the precipitous East Fork of the Kaweah River canyon in Sequoia National Park, unfortunately now engulfed in a huge wildfire.
      The first science block ends with atmospheric observations, including a dust-devil movie, supra-horizon cloud imaging, and Mastcam measurement of dust in the air across the crater. Curiosity will then use its arm to brush the dust from the closest block in an area dubbed “Pond Lily Lake,” for a petite meadow lake atop the canyon wall of the San Joaquin River, downstream of Devil’s Postpile National Monument. This cleared spot will then be imaged by MAHLI and Mastcam, and its composition will be measured by APXS spectroscopy. MAHLI will perform an intricate “dog’s eye” maneuver to obtain detailed images of ripples in “Window Cliffs,” named after sheer walls above the spectacular fault-controlled Kern River canyon west of 14,505-foot Mount Whitney, the tallest peak in the lower 48 states. MAHLI wraps up a very full day of work by imaging the scalloped edge of the largest nearby block, dubbed “Boneyard Meadow” for a wetland in the western Sierra foothills where many sheep sadly perished due to a late spring snowstorm in 1877.
      Early on sol 4301, Curiosity will use Mastcam to thoroughly document the Tungsten Hills in pre-sunrise morning light. Later in the day, a second science block starts with ChemCam spectroscopy and Mastcam imagery of “Castle Domes,” honoring the granite domes of Castle Valley, acclaimed as some of the most beautiful mountain scenery in Kings Canyon National Park. ChemCam RMI will perform telescopic observations of the channel floor. Mastcam will look for possible sulfur rocks at the base of the Tungsten Hills blocks in a target named “Hummingbird Lake,” for an alpine lake at 10,000 feet between Bloody and Lundy Canyons near Mono Lake. This science block of the plan ends with Navcam deck monitoring, dust measurement, and a large dust-devil survey. Curiosity will then drive north, taking a MARDI “sidewalk” video of the terrain under the rover during the drive.
      Written by Deborah Padgett, OPGS Task Lead at NASA’s Jet Propulsion Laboratory
      Share








      Details
      Last Updated Sep 10, 2024 Related Terms
      Blogs Explore More
      2 min read Sols 4297-4299: This Way to Tungsten Hills


      Article


      12 hours ago
      2 min read Persevering Through the Storm
      It’s dust-storm season on Mars! Over the past couple of weeks, as we ascended the…


      Article


      5 days ago
      2 min read Sols 4295-4296: A Martian Moon and Planet Earth


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
      Sols 4297-4299: This Way to Tungsten Hills
      This image was taken by Left Navigation Camera aboard NASA’s Mars rover Curiosity on Sol 4296 — Martian day 4,296 of the Mars Science Laboratory mission — on Sept. 6, 2024, at 06:47:03 UTC. NASA/JPL-Caltech Earth planning date: Friday, Sept. 6, 2024
      Contact science in our immediate workspace includes a joint effort by MAHLI and APXS to characterize a gray rock with two targets named “Big Baldy” and “Big Bird Lake.” ChemCam focused its Laser Induced Breakdown Spectroscopy (LIBS) instrument on a rock with a reddish coating, “Purple Creek,” and a light-toned rock, “Garlic Meadow,” to determine their chemical composition. ChemCam included a long distance RMI image of the yardang unit that caps Mount Sharp as well as a standard post-drive AEGIS activity, which allows autonomous target selection for upcoming geochemical spectrometry.
      The Mastcam team assembled several beautiful mosaics to document Curiosity’s surroundings. One mosaic will extend the imaging of the current workspace and is planned at dusk to take advantage of the diffuse lighting. Two separate mosaics, one of which is in stereo, will characterize the floor of the depression in front of Tungsten Hills to investigate the exposed light rocks and document depositional processes. Finally, a stereo mosaic will image Tungsten Hills and the surrounding terrain in advance of our approach over the weekend.
      With the weekend plan in place the science team will now patiently wait for data to be returned and for planning to resume on Monday!
      Curiosity completed an impressive 60-meter drive (about 197 feet) across the channel floor within Gediz Vallis and parked along the edge of a shallow linear depression. Just about 20 meters (66 feet) away, an intriguing dark, textured rock named “Tungsten Hills” is the destination for our weekend drive and our contact science on Monday. Today I served as the “Keeper of the Plan” for the Geology theme group and worked with the science team to compile a variety of contact science and targeted science in this three-sol plan.
      Written by Sharon Wilson Purdy, Planetary Geologist at the Smithsonian National Air and Space Museum
      Share








      Details
      Last Updated Sep 10, 2024 Related Terms
      Blogs Explore More
      2 min read Persevering Through the Storm
      It’s dust-storm season on Mars! Over the past couple of weeks, as we ascended the…


      Article


      4 days ago
      2 min read Sols 4295-4296: A Martian Moon and Planet Earth


      Article


      4 days ago
      2 min read Sol 4294: Return to McDonald Pass


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      4 min read
      NASA Science for Your Classroom: Opportunities for Educators
      The summer season for educators can be a time of rest and rejuvenation, but it can also offer opportunities for professional learning with new colleagues beyond your own school. The following programs from NASA’s Science Activation Program offer end-of-summer/early-fall curricular resources and connections with other educators that can help you bring new science ideas and activities into your instructional practice.  
      Celebrating the Moon & Moon Rocks with NASA – A Webinar for Educators
      Join us, as the world awaits this year’s International Observe the Moon Night (InOMN on September 14, 2024), for this free NASA Astromaterials Research and Exploration Science (ARES) interactive webinar focusing on the Moon, Moon rocks, Apollo and future Artemis Missions! This session will be geared towards educators and their students (targeting grades 5-9 but other grade levels, college students, and individual educators are welcome to participate). Participants will interact with Dr. Juliane Gross, Artemis Curation Lead at the NASA Johnson Space Center in Houston, TX. The presentation will last approximately 45 minutes followed by an optional 15-30 minutes of Q&A. If you can’t participate live, feel free to register to receive an archived recording of the presentation. 
      When: September 11 at 1:00 – 2:15 p.m. EDT Learn more and register Infusing Space Rock Content and More into Learning Environments
      Join NASA Astromaterials Research and Exploration Science for an interactive webinar focusing on hands-on and digital Earth and Space Science resources appropriate for both formal and informal learning settings. This session, geared towards educators who work with grades 3 through HS or general audiences at public events, will prepare you to engage learners with content associated with Moon rocks, meteorites, samples from asteroids and more! Presentation will last approximately 50 minutes followed by an optional 10+ minutes of Q&A. Those who register below will receive an archived recording of the presentation. 
      When: September 17 at  8 p.m. EDT  Register now Spark Curiosity with Infiniscope’s Free Resources!
      Infiniscope is a NASA-funded project focused on sparking curiosity, fostering exploration, and delivering digital content and tools that transform the learning experience. NGSS-Designed digital learning experiences are just the beginning. Whether you want classroom-ready content or the tools and support to build your own, we’ve got you covered. 
      If you’re a middle school or highschool educator, join the webinars below and discover the incredible FREE resources waiting for you at Infiniscope.org. In this guided tour, you’ll learn how to: search for classroom-ready content on the website, find educator resources and detailed lesson information, enroll students in lessons and collections, sign up for future training events, access the virtual field trip creator, and get more information on our adaptive lesson builder. Learn more about Infiniscope.
      Intro to Infiniscope Registration – September 17 at 4 p.m. EDT Intro to Infiniscope Registration – October 22  at 6 p.m. EDT Take Your Learners Anywhere with Tour It!
      With Tour It, Infiniscope’s free virtual field trip creator, you can make place-based learning accessible to all your learners, boosting engagement and learning outcomes while enabling them to build personal connections. Tour It is your gateway to creating captivating virtual field trips! As a member of the Infiniscope teaching network, you’ll have exclusive access to this amazing tool that brings immersive learning experiences to life. Whether you’re a seasoned educator or just starting your journey, Tour It empowers you to craft engaging and interactive virtual tours that inspire learners and enable them to build personal connections to a place. Learn more about Tour it.
      Exploring Place-Based Learning Registration – September 17 at 4 p.m. EDT Planning Your Virtual Field Trip Registration – October 22 at 6 p.m. EDT Heliophysics Webinars for Educators: Physics in an Astronomy Context
      NASA’s Heliophysics Education Activation Team (HEAT) and the American Association of Physics Teachers (AAPT) have put together a free, monthly, virtual workshop series for teachers of astrophysics taught in the context of introductory and upper division physics and astronomy courses. While these workshops are intended for secondary- and tertiary-level teachers who teach in formal classroom contexts, other educators are also welcome if the content covered is appropriate to your teaching context. 
      These virtual gatherings of 25-50 teachers occur one Saturday per month and provide an astrophysics mini-lecture, a small group engagement with the core activity, and discussion time to connect with like-minded educators. 
      Dates and Topics: 
      September, 21, 2024 – Coronal Mass Ejection Science October 12, 2024 – Planetary Magnetism Science November 9, 2024 – Auroral Currents December 7, 2024 – Star Spectra Science Time: 1 – 2:30 p.m. EDT
      Register here 
      We hope these resources will help prepare you for a wonderful year of amazing science learning… and beyond!
      Share








      Details
      Last Updated Sep 09, 2024 Related Terms
      Learning Resources Science Activation Explore More
      2 min read NASA Summer Camp Inspires Future Climate Leaders


      Article


      3 days ago
      2 min read Leveraging Teacher Leaders to Share the Joy of NASA Heliophysics


      Article


      5 days ago
      2 min read NASA Earth Science Education Collaborative Member Co-Authors Award-Winning Paper in Insects


      Article


      6 days ago
      Keep Exploring Discover Related Topics
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
      Sols 4295-4296: A Martian Moon and Planet Earth
      Using an onboard focusing process, the Mars Hand Lens Imager (MAHLI) aboard NASA’s Mars rover Curiosity created this product by merging two to eight images previously taken by the MAHLI, which is located on the turret at the end of the rover’s robotic arm. Curiosity performed the merge on Sept. 4, 2024, at 06:30:48 UTC — sol 4294, or Martian day 4,294 of the Mars Science Laboratory mission. The onboard focus merge is sometimes performed on images acquired the same sol as the merge, and sometimes using pictures obtained earlier. Focus merging is a method to make a composite of images of the same target acquired at different focus positions to bring as many features as possible into focus in a single image. The MAHLI focus merge also serves as a means to reduce the number of images sent back to Earth. Each focus merge produces two images: a color, best-focus product and a black-and-white image that scientists can use to estimate focus position for each element of the best-focus product. So up to eight images can be merged, but the number of images returned to Earth is two. NASA/JPL-Caltech/MSSS Earth planning date: Wednesday, Sept. 4, 2024
      Today’s two-sol plan contains the usual science blocks filled with contact science and remote science to observe and assess the geology surrounding us. However, the Mastcam team is hoping to capture a special celestial event above the Martian skyline as one of Mars’ moons, Phobos, will be in conjunction with Earth on the evening of the first sol of this plan. So everyone look up, and smile for the camera!
      Coming back to our beautiful workspace, in this plan there is a focus on targeting the different colors and tones we can see in the bedrock with our suite of instruments. In the image above we can see some of these varying tones — including gray areas, lighter-toned areas, and areas of tan-colored bedrock — with an image from the MAHLI instrument, Curiosity’s onboard hand lens.
      APXS is targeting “Campfire Lake,” a lighter-toned area, and “Gemini,” a more gray-toned area situated in front of the rover. MAHLI is taking a suite of close-up images of these targets too. ChemCam is then taking two LIBS measurements of “Crazy Lake” and “Foolish Lake,” both of which appear to have lighter tones. Mastcam is documenting this whole area with a workspace mosaic and an 8×2 mosaic of “Picture Puzzle,” named after the rock in the image above that was taken during the previous plan. Mastcam will also be capturing a 6×3 mosaic of an outcrop named “Outguard Spire” that has an interesting gray rim. Looking further afield, ChemCam has planned a long-distance RMI image of the yardang unit and Navcam is taking a suprahorizon movie and dust-devil survey for our continued observations of the atmosphere to round out this plan.
      Written by Emma Harris, Graduate Student at Natural History Museum, London
      Share








      Details
      Last Updated Sep 05, 2024 Related Terms
      Blogs Explore More
      2 min read Sol 4294: Return to McDonald Pass


      Article


      15 hours ago
      3 min read Sols 4291-4293: Fairview Dome, the Sequel


      Article


      16 hours ago
      3 min read Behind the Scenes at the 2024 Mars 2020 Science Team Meeting
      The Mars 2020 Science Team meets in Pasadena for 3 days of science synthesis


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
      Sols 4291-4293: Fairview Dome, the Sequel
      This image was taken by Left Navigation Camera aboard NASA’s Mars rover Curiosity on sol 4289 — Martian day 4,289 of the Mars Science Laboratory mission — on Aug. 30, 2024 at 03:48:38 UTC. To the left of the crescent-shaped formation in the low-center part of the image, a wheel track is visible along with an “intriguing” batch of shattered rock where Curiosity had previously driven. NASA/JPL-Caltech Earth planning date: Friday, Aug. 30, 2024
      Our backwards drive to “McDonald Pass” got hung up on the steep slopes of “Fairview Dome,” but unlike a lot of movie sequels, our inadvertent return visit to Fairview Dome was at least as good as the original. We took full advantage of the chance to investigate this bedrock rise within Gediz Vallis with multiple contact and remote science targets. 
      MAHLI and APXS paired up on two different DRT targets of more- and less-nodular spots of bedrock at “Lower Boy Scout Lake” and “Upper Boy Scout Lake.” You can see in the Navcam image above that just beyond the bedrock slab we stopped on, there is a wheel track and a shattered batch of rock. We crushed that bit of rock as we drove backward and were left with a great view of it, including some intriguing bright rock interiors. ChemCam targeted one of those bright rock faces at “North Palisade” and Mastcam acquired a mosaic across the whole field of broken rocks at “Ritter-Banner Saddle.” The churned-up sand of Ritter-Banner Saddle also made for a convenient change detection target as we keep our eye on the wind effects of a potential dust storm rising on Mars. ChemCam had two other opportunities for LIBS analyses at a nodular bedrock target called “Regulation Peak,” and another intriguing vertical rock face with strong color differences called “Simmons Peak.” ChemCam used RMI mosaics to image a collection of higher albedo rocks in Gediz Vallis at a site called “Buckeye Ridge.” Mastcam planned a mosaic of a different part of Gediz Vallis that is in the direction we are driving next, which will help plot those drives and also give us some insight into the boulders strewn about that part of the valley. Closer to the rover, the “Outguard Spire” target was of interest for Mastcam imaging because of its color zonation — the way colors are distributed across different areas, or zones, of the rock. It’s the kind of zonation we intend to study at McDonald Pass. The trough of sand at the “Whitney-Russell Pass” target was of interest for its potential insights into how bedrock blocks break up on Mars.
      Monitoring the potential rise of a dust storm meant that the plan was busy with environmental observations. ChemCam acquired a passive sky observation, Navcam collected two rounds of dust-devil imaging, cloud movies, and atmospheric dust measurements, Mastcam acquired multiple atmospheric dust measurements, and REMS ran in longer blocks throughout each sol than it does in normal weather conditions. Dust or not, RAD and DAN passive were planned regularly through the three sols of the plan.
      Written by Michelle Minitti, Planetary Geologist at Framework
      Share








      Details
      Last Updated Sep 05, 2024 Related Terms
      Blogs Explore More
      2 min read Sol 4294: Return to McDonald Pass


      Article


      9 mins ago
      3 min read Behind the Scenes at the 2024 Mars 2020 Science Team Meeting
      The Mars 2020 Science Team meets in Pasadena for 3 days of science synthesis


      Article


      6 days ago
      4 min read Sols 4289-4290: From Discovery Pinnacle to Kings Canyon and Back Again


      Article


      7 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
  • Check out these Videos

×
×
  • Create New...