Jump to content

Watch Carbon Dioxide Move Through Earth’s Atmosphere


Recommended Posts

  • Publishers
Posted
5 Min Read

Watch Carbon Dioxide Move Through Earth’s Atmosphere

Global CO2 ppm for January-March of 2020. This camera move orbits Earth from a distance.
Credits:
NASA’s Scientific Visualization Studio

What we’re looking at:

This global map shows concentrations of carbon dioxide as the gas moved through Earth’s atmosphere from January through March 2020, driven by wind patterns and atmospheric circulation. 

Because of the model’s high resolution, you can zoom in and see carbon dioxide emissions rising from power plants, fires, and cities, then spreading across continents and oceans.  

Global CO2 ppm for January-March of 2020. This camera move orbits Earth from a distance. Download this visualization from NASA’s Scientific Visualization Studio: https://svs.gsfc.nasa.gov/5196 Credits: NASA’s Scientific Visualization Studio

“As policymakers and as scientists, we’re trying to account for where carbon comes from and how that impacts the planet,” said climate scientist Lesley Ott at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “You see here how everything is interconnected by these different weather patterns.”

You see here how everything is interconnected by these different weather patterns.

Lesley Ott

Lesley Ott

NASA Climate scientist

What are the sources of CO2? 

Over China, the United States, and South Asia, the majority of emissions came from power plants, industrial facilities, and cars and trucks, Ott said. Meanwhile, in Africa and South America, emissions largely stemmed from fires, especially those related to land management, controlled agricultural burns and deforestation, along with the burning of oil and coal. Fires release carbon dioxide as they burn.

Why does the map look like it’s pulsing? 

Global CO2 ppm for January-March of 2020. This camera move zooms in on the eastern United States. Download this visualization from NASA’s Scientific Visualization Studio: https://svs.gsfc.nasa.gov/5196 Credits: NASA’s Scientific Visualization Studio

There are two primary reasons for the pulsing: First, fires have a clear day-night cycle. They typically flare up during the day and die down at night. 

Second, you’re seeing the absorption and release of carbon dioxide as trees and plants photosynthesize. Earth’s land and oceans absorb about 50% of carbon dioxide; these are natural carbon sinks. Plants take up carbon dioxide during the day as they photosynthesize and then release it at night through respiration. Notice that much of the pulsing occurred in regions with lots of trees, like mid- or high-latitude forests. And because the data were taken during the Southern Hemisphere summer, you see more pulsing in the tropics and South America, where it was the active growing season. 

Some of the pulsing also comes from the planetary boundary layer — the lowest 3,000 feet (900 meters) of the atmosphere — which rises as the Earth’s surface is heated by sunlight during the day, then falls as it cools at night.

The data that drives it:  

The map was created by NASA’s Scientific Visualization Studio using a model called GEOS, short for the Goddard Earth Observing System. GEOS is a high-resolution weather model, powered by supercomputers, that is used to simulate what was happening in the atmosphere — including storm systems, cloud formations, and other natural events. GEOS pulls in billions of data points from ground observations and satellite instruments, such as the Terra satellite’s MODIS  and the Suomi-NPP satellite’s VIIRS instruments. Its resolution is more than 100 times greater than a typical weather model. 

Ott and other climate scientists wanted to know what GEOS would show if it was used to model the movement and density of carbon dioxide in the global atmosphere. 

“We had this opportunity to say: can we tag along and see what really high-resolution CO2 looks like?” Ott said. “We had a feeling we were going to see plume structures and things that we’ve never been able to see when we do these coarser resolution simulations.” 

Her instinct was right. “Just seeing how persistent the plumes were and the interaction of the plumes with weather systems, it was tremendous.”

Why it matters:

NASA’s Goddard Space Flight Center/Scientific Visualization Studio/ Katie Jepson

We can’t tackle climate change without confronting the fact that we’re emitting massive amounts of CO2, and it’s warming the atmosphere, Ott said. 

Carbon dioxide is a heat-trapping greenhouse gas and the primary reason for Earth’s rising temperatures. As CO2 builds in the atmosphere, it warms our planet. This is clear in the numbers. 2023 was the hottest year on record, according to scientists from NASA’s Goddard Institute for Space Studies (GISS) in New York. Most of the 10 hottest years on record have occurred in the past decade.

All this carbon dioxide isn’t harmful to air quality. In fact, we need some carbon dioxide to keep the planet warm enough for life to exist. But when too much CO2 is pumped into the atmosphere, the Earth warms too much and too fast. That’s what has been happening for at least the past half century. The concentration of carbon dioxide in the atmosphere increased from approximately 278 parts per million in 1750, the beginning of the industrial era, to 427 parts per million in May 2024.

Human activities have “unequivocally caused warming,” according to the latest report by the Intergovernmental Panel on Climate Change. This warming is leading to all sorts of changes to our climate, including more intense storms, wildfires, heat waves, and rising sea levels.

Inside the SVS studio:

Carbon dioxide exists everywhere in the atmosphere, and the challenge for AJ Christensen, a senior visualization designer at NASA’s Goddard Space Flight Center, was to show the differences in density of this invisible gas.

“We didn’t want people to get the impression that there was no carbon dioxide in these sparser regions,” Christensen said. “But we also wanted to really highlight the dense regions because that’s the interesting feature of the data. We were trying to show that there’s a lot of density over New York and Beijing.”  

Data visualizations help people understand how Earth’s systems work, and they can help scientists find patterns in massive datasets, Ott said. 

“What’s happening is you’re stitching together this very complex array of models to make use of the different satellite data, and that’s helping us fill in this broad puzzle of all the processes that control carbon dioxide,” Ott said. “The hope is that if we understand greenhouse gases really well today, we’ll be able to build models that better predict them over the next decades or even centuries.”

For more information and data on greenhouse gases, visit the U.S. Greenhouse Gas Center.

About the Author

Jenny Marder

Jenny Marder

Share

Details

Last Updated
Jul 23, 2024
Location
Goddard Space Flight Center
Keep Exploring

Discover More Topics From NASA

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Image data: NASA/JPL-Caltech/SwRI/MSSS; Image processing: Jackie Branc (CC BY) JunoCam, the visible light imager aboard NASA’s Juno spacecraft, captured this view of Jupiter’s northern high latitudes during the spacecraft’s 69th flyby of the giant planet on Jan. 28, 2025. Jupiter’s belts and zones stand out in this enhanced color rendition, along with the turbulence along their edges caused by winds going in different directions.
      The original JunoCam data used to produce this view was taken from an altitude of about 36,000 miles (58,000 kilometers) above Jupiter’s cloud tops. JunoCam’s raw images are available for the public to peruse and process into image products. Citizen scientist Jackie Branc processed the image.
      Since Juno arrived at Jupiter in 2016, it has been probing beneath the dense, forbidding clouds encircling the giant planet – the first orbiter to peer so closely. It seeks answers to questions about the origin and evolution of Jupiter, our solar system, and giant planets across the cosmos.
      Learn more about NASA citizen science.
      Image credit: Image data: NASA/JPL-Caltech/SwRI/MSSS; Image processing: Jackie Branc (CC BY)
      View the full article
    • By NASA
      4 Min Read NASA Expands SPHEREx Science Return Through Commercial Partnership
      A sectional rendering of NASA's SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer). Credits: NASA NASA is partnering with commercial industry to expand our knowledge of Earth, our solar system, and beyond. Recently, NASA collaborated with Kongsberg Satellite Services (KSAT) to support data transfer for the agency’s SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) mission to explore the origins of the universe. 
      “Not only is NASA moving toward commercialization, the agency is making technological advancements to existing systems and saving millions of dollars in the process — all while expanding human knowledge through science and exploration missions,” said Kevin Coggins, associate administrator for NASA’s SCaN (Space Communications and Navigation) program.
      To receive data from missions in space, NASA relies on the Near Space Network and Deep Space Network, a collection of antennas around the globe.
      In preparation for the recently-launched SPHEREx observatory, NASA needed to upgrade an antenna on the world’s most remote continent: Antarctica.
      Transmitted via NASA’s Near Space Network, this video shows SPHEREx scanning a region of the Large Magellanic Cloud. The shifting colors represent different infrared wavelengths detected by the telescope’s two arrays. Credit: NASA/JPL-Caltech NASA’s SCaN program took a novel approach by leveraging its established commercial partnership with KSAT. While upgraded KSAT antennas were added to the Near Space Network in 2023, SPHEREx required an additional Antarctic antenna that could link to online data storage.
      To support SPHEREx’s polar orbit, KSAT upgraded its Troll, Antarctica antenna and incorporated their own cloud storage system. NASA then connected KSAT’s cloud to the NASA cloud, DAPHNE+ (Data Acquisition Process and Handling Environment).
      As the Near Space Network’s operational cloud services system, DAPHNE+ enables science missions to transmit their data to the network for virtual file storage, processing, and management. 
      “By connecting the Troll antenna to DAPHNE+, we eliminated the need for large, undersea fiberoptic cables by virtually connecting private and government-owned cloud systems, reducing the project’s cost and complexity,” said Matt Vincent, the SPHEREx mission manager for the Near Space Network at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      Each day, SPHEREx downlinks a portion of its 20 gigabits of science data through the Troll antenna, which transfers the files across KSAT’s network of relay satellites to the DAPHNE+ cloud. The cloud system combines and centralizes the data from each antenna, allowing access to all of SPHEREx’s health and science data in one convenient place. 
      The SPHEREx mission data is transmitted from space to the Troll Satellite Station, relayed through a network of satellites, and stored in the Near Space Network’s cloud system for easily-accessible analysis by scientists around the world.NASA/Dave Ryan With coverage throughout its orbit, SPHEREx transmits its 3D maps of the celestial sky, offering new insight into what happened a fraction of a second after the big bang. 
      “Missions like SPHEREx use the Near Space Network’s combination of commercial and government antennas,” explained Michael Skube, DAPHNE+ manager at NASA Goddard. “And that is the benefit of DAPHNE+ — it enables the network to pull different sources of information into one central location. The DAPHNE+ system treats government and commercial antennas as part of the same network.” 
      The partnership is mutually beneficial. NASA’s Near Space Network maintains a data connection with SPHEREx as it traverses both poles and KSAT benefits from its antennas’ integration into a robust global network – no new cables required. 
       “We were able to find a networking solution with KSAT that did not require us to put additional hardware in Antarctica,” said Vincent. “Now we are operating with the highest data rate we have ever downlinked from that location.” 
      The upgraded ground station antenna at Troll Satellite Station supports cloud-based space communications, enabling NASA’s Near Space Network to support scientific missions via a wireless cloud network.Kongsberg Satellite Services For NASA, its commercial partners, and other global space agencies, this expansion means more reliable space communications with fewer expenses. 
      Troll’s successful integration into the Near Space Network is a case study for future private and government partnerships. As SPHEREx measures the collective glow of over 450 million galaxies as far as 10 billion light-years away, SCaN continues to innovate how its discoveries safely return to Earth. 
      The SPHEREx mission is managed by NASA’s Jet Propulsion Laboratory in Southern California for the agency’s Astrophysics Division within the Science Mission Directorate at NASA Headquarters. Data will be processed and archived at IPAC at Caltech. The SPHEREx dataset will be publicly available at the NASA-IPAC Infrared Science Archive. Funding and oversight for DAPHNE+ and the Near Space Network come from the SCaN program office at NASA Headquarters and operate out of NASA’s Goddard Space Flight Center. The Troll Satellite Station is owned and operated by Kongsberg Satellite Services and located in Queen Maud Land, Antarctica. 
      About the Author
      Korine Powers
      Lead Writer and Communications StrategistKorine Powers, Ph.D. is a writer for NASA's Space Communications and Navigation (SCaN) program office and covers emerging technologies, commercialization efforts, exploration activities, and more.
      Share
      Details
      Last Updated May 06, 2025 Related Terms
      Communicating and Navigating with Missions Commercial Space Space Communications & Navigation Program SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) View the full article
    • By USH
      A few days ago, a rare phenomenon was captured on video in a parking lot in Nashville, Tennessee, during a thunderstorm. 

      The footage shows a large flash, followed by several small fireballs sparking around parked cars, culminating in the appearance of a sizable glowing orb that appears to be a so-called ball lightning. 
      The ball lightning behaved erratically, moving across the lot, triggering car alarms, and causing power fluctuations throughout the area. 
      Ball lightning is a rare and still poorly understood phenomenon, typically described as a rapidly rotating orb of plasma. View the full article
    • By NASA
      3 Min Read NASA Invests in Future STEM Workforce Through Space Grant Awards 
      NASA is awarding up to $870,000 annually to 52 institutions across the United States, the District of Columbia, and Puerto Rico over the next four years. The investments aim to create opportunities for the next generation of innovators by supporting workforce development, science, technology, engineering and math education, and aerospace collaboration nationwide. 
      The Space Grant College and Fellowship Program (Space Grant), established by Congress in 1989, is a workforce development initiative administered through NASA’s Office of STEM Engagement (OSTEM). The program’s mission is to produce a highly skilled workforce prepared to advance NASA’s mission and bolster the nation’s aerospace sector. 
      “The Space Grant program exemplifies NASA’s commitment to cultivating a new generation of STEM leaders,” said Torry Johnson, deputy associate administrator of the STEM Engagement Program at NASA Headquarters in Washington. “By partnering with institutions across the country, we ensure that students have the resources, mentorship, and experiences needed to thrive in the aerospace workforce.” 
      The following is a complete list of awardees: 
      University of Alaska, Fairbanks  University of Alabama, Huntsville  University of Arkansas, Little Rock  University of Arizona  University of California, San Diego  University of Colorado, Boulder  University of Hartford, Connecticut  American University, Washington, DC  University of Delaware  University of Central Florida  Georgia Institute of Technology  University of Hawaii, Honolulu  Iowa State University, Ames  University of Idaho, Moscow  University of Illinois, Urbana-Champaign  Purdue University, Indiana  Wichita State University, Kansas  University of Kentucky, Lexington  Louisiana State University and A&M College  Massachusetts Institute of Technology  Johns Hopkins University, Maryland  Maine Space Grant Consortium  University of Michigan, Ann Arbor  University of Minnesota  Missouri University of Science and Technology  University of Mississippi  Montana State University, Bozeman  North Carolina State University  University of North Dakota, Grand Forks  University of Nebraska, Omaha  University of New Hampshire, Durham  Rutgers University, New Brunswick, New Jersey  New Mexico State University  Nevada System of Higher Education  Cornell University, New York  Ohio Aerospace Institute  University of Oklahoma  Oregon State University  Pennsylvania State University  University of Puerto Rico  Brown University, Rhode Island  College of Charleston, South Carolina  South Dakota School of Mines & Technology  Vanderbilt University, Tennessee  University of Texas, Austin  University of Utah, Salt Lake City  Old Dominion University Research Foundation, Virginia  University of Vermont, Burlington  University of Washington, Seattle  Carthage College, Wisconsin  West Virginia University  University of Wyoming  Space Grant operates through state-based consortia, which include universities, university systems, associations, government agencies, industries, and informal education organizations engaged in aerospace activities. Each consortium’s lead institution coordinates efforts within its state, expanding opportunities for students and researchers while promoting collaboration with NASA and aerospace-related industries nationwide. 
      To learn more about NASA’s missions, visit: https://www.nasa.gov/ 

      View the full article
    • By European Space Agency
      ESA’s groundbreaking Biomass satellite, designed to provide unprecedented insights into the world’s forests and their crucial role in Earth’s carbon cycle, has been launched. The satellite lifted off aboard a Vega-C rocket from Europe’s Spaceport in Kourou, French Guiana, on 29 April at 11:15 CEST (06:15 local time).
      View the full article
  • Check out these Videos

×
×
  • Create New...