Jump to content

NASA’s 21st Northrop Grumman Mission Launches Scientific Studies to Station


Recommended Posts

  • Publishers
Posted

NASA and its international partners are sending scientific investigations to the International Space Station on Northrop Grumman’s 21st commercial resupply services mission. Flying aboard the company’s Cygnus spacecraft are tests of water recovery technology and a process to produce stem cells in microgravity, studies of the effects of spaceflight on microorganism DNA and liver tissue growth, and live science demonstrations for students. The mission is scheduled to launch from Cape Canaveral Space Force Station in Florida by early August.

Read more about some of the research making the journey to the orbiting laboratory:

Testing materials for packed systems

Packed bed reactors are systems that use materials such as pellets or beads “packed” inside a structure to increase contact between different phases of fluids, such as liquid and gas. These reactors are used for various applications including water recovery, thermal management, and fuel cells. Scientists previously tested the performance in space of glass beads, Teflon beads, a platinum catalyst, and other packing materials. Packed Bed Reactor Experiment: Water Recovery Series evaluates gravity’s effects on eight additional test articles.

Results could help optimize the design and operation of packed bed reactors for water filtration and other systems in microgravity and on the Moon and Mars. Insights from the investigation also could lead to improvements in this technology for applications on Earth such as water purification and heating and cooling systems.

A suitcase-sized piece of equipment sitting on a blue tabletop has a copper-colored frame and a metal box on the closest end with multiple nozzles and cords. A clear tube the length of the hardware is filled with small white beads. A person wearing a white lab coat and blue gloves is visible from the shoulders down behind the equipment.
Hardware for the packed bed water recovery reactor experiment. The packing media is visible in the long clear tube.
NASA

Giving science a whirl

STEMonstrations Screaming Balloon uses a balloon, a penny, and a hexagonal nut (the kind used to secure a bolt) for a NASA STEMonstration performed and recorded by astronauts on the space station. The penny and the nut are whirled separately inside an inflated balloon to compare the sounds they make. Each STEMonstration illustrates a different scientific concept, such as centripetal force, and includes resources to help teachers further explore the topics with their students.

The left side of this image shows the space station above a cloud-covered Earth. The right side shows Dominick, wearing a blue t-shirt and khaki pants, hanging upside-down from a hatch, and Epps, wearing a black polo with an Expedition 70 patch, facing the camera. The STEMonstrations logo is on the left top of the image.
NASA astronauts Matthew Dominick and Jeanette Epps prepare for a STEMonstration on the International Space Station.
NASA

More, better stem cells

In-Space Expansion of Hematopoietic Stem Cells for Clinical Application (InSPA-StemCellEX-H1) continues testing a technology to produce human hematopoietic stem cells (HSCs) in space. HSCs give rise to blood and immune cells and are used in therapies for patients with certain blood diseases, autoimmune disorders, and cancers.

The investigation uses a system called BioServe In-space Cell Expansion Platform, or BICEP, which is designed to expand HSCs three hundredfold without the need to change or add new growth media, according to Louis Stodieck, principal investigator at the University of Colorado Boulder. “BICEP affords a streamlined operation to harvest and cryopreserve cells for return to Earth and delivery to a designated medical provider and patient,” said Stodieck.

Someone in the United States is diagnosed with a blood cancer such as leukemia about every three minutes. Treating these patients with transplanted stem cells requires a donor-recipient match and long-term repopulation of transplanted stem cells. This investigation demonstrates whether expanding stem cells in microgravity could generate far more continuously renewing stem cells.

“Our work eventually could lead to large-scale production facilities, with donor cells launched into orbit and cellular therapies returned to Earth,” said Stodieck.

 

NASA astronaut and Expedition 69 Flight Engineer Frank Rubio works in the Kibo laboratory module's Life Sciences Glovebox servicing stem cell samples for the StemCellEX-H Pathfinder study. The biotechnology investigation seeks to improve therapies for blood diseases and cancers such as leukemia.
NASA astronaut Frank Rubio works on the first test of methods for expanding stem cells in space, StemCellEX-H Pathfinder. The InSPA-StemCellEX-H1 investigation continues this work.
NASA

DNA repair in space

Rotifer-B2, an ESA (European Space Agency) investigation, explores how spaceflight affects DNA repair mechanisms in a microscopic bdelloid rotifer, Adineta vaga. These tiny but complex organisms are known for their ability to withstand harsh conditions, including radiation doses 100 times higher than human cells can survive. The organisms are dried, exposed to high radiation levels on Earth, and rehydrated and cultured in an incubator on the station.

“Previous research indicates that rotifers repair their DNA in space with the same efficiency as on Earth, but that research provided only genetic data,” said Boris Hespeels, co-investigator, of Belgium’s Laboratory of Evolutionary Genetics and Ecology. “This experiment will provide the first visual proof of survival and reproduction during spaceflight,” said Hespeels

Results could provide insights into how spaceflight affects the rotifer’s ability to repair sections of damaged DNA in a microgravity environment, and could improve the general understanding of DNA damage and repair mechanisms for applications on Earth.

A cell phone-sized blue box with a barcode label and a white button floats in the space station. A closed laptop and several storage boxes are visible in the background and a black camera is mounted in the foreground.
A culture chamber for the Rotifer-B2 investigation aboard the International Space Station.
NASA

Growing liver tissue

Maturation of Vascularized Liver Tissue Construct studies the development in space of bioprinted liver tissue constructs that contain blood vessels. Constructs are tissue samples grown outside the body using bioengineering techniques. Scientists expect the microgravity environment to allow improved cellular distribution throughout tissue constructs.

“We are especially keen on accelerating the development of vascular networks,” said James Yoo, principal investigator, at the Wake Forest Institute of Regenerative Medicine. “The experimental data from microgravity will provide valuable insights that could enhance the biomanufacturing of vascularized tissues to serve as building blocks to engineer functional organs for transplantation.”

This image has three boxes. In the first is a white cube on a blue background with sides about a half-inch long and multiple open spaces like Swiss cheese. The second box shows a solid, reddish gelatinous cube on a white background. The third has a diagram of a small tissue chamber with three cells, a cylindrical reddish medium container, a black square micropump, and a round black bubble trap all connected in a loop.
Image A shows a vascularized tissue construct with interconnected channels, and image B shows a bioprinted human liver tissue construct fabricated with a digital light projection printer. Image C shows the tissue construct connected to a perfusion system, a pump that moves fluid through it.
Wake Forest Institute for Regenerative Medicine.

This mission also delivers plants for the APEX-09 investigation, which examines plant responses to stressful environments and could inform the design of bio-regenerative support systems on future space missions.

Melissa Gaskill
International Space Station Research Communications Team
NASA’s Johnson Space Center

Download high-resolution photos and videos of the research mentioned in this article.

Search this database of scientific experiments to learn more about those mentioned in this article.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The four crew members of NASA’s SpaceX Crew-11 mission to the International Space Station train inside a SpaceX Dragon spacecraft in Hawthorne, California. From left to right: Roscosmos cosmonaut Oleg Platonov, NASA astronauts Mike Fincke and Zena Cardman, and JAXA astronaut Kimiya YuiSpaceX Four crew members are preparing to launch to the International Space Station as part of NASA’s SpaceX Crew-11 mission to perform research, technology demonstrations, and maintenance activities aboard the orbiting laboratory.
      During the mission, Crew-11 also will contribute to NASA’s Artemis campaign by simulating Moon landing scenarios that astronauts may encounter near the lunar South Pole, showing how the space station helps prepare crews for deep space human exploration. The simulations will be performed before, during, and after their mission using handheld controllers and multiple screens to identify how changes in gravity affect spatial awareness and astronauts’ ability to pilot spacecraft, like a lunar lander.
      NASA astronauts Zena Cardman and Mike Fincke, JAXA (Japan Aerospace Exploration Agency) astronaut Kimiya Yui, and Roscosmos cosmonaut Oleg Platonov will lift off no earlier than 12:09 p.m. EDT on Thursday, July 31, from Launch Complex 39A at the agency’s Kennedy Space Center in Florida on a long-duration mission. The cadre will fly aboard a SpaceX Dragon spacecraft, named Endeavour, which previously flew NASA’s SpaceX Demo-2, Crew-2, Crew-6, and Crew-8 missions, as well as private astronaut mission Axiom Mission 1.
      The flight is the 11th crew rotation mission with SpaceX to the space station as part of NASA’s Commercial Crew Program. Overall, the Crew-11 mission is the 16th crewed Dragon flight to the space station, including Demo-2 in 2020 and 11 operational crew rotations for NASA, as well as four private astronaut missions.
      As support teams progress through Dragon preflight milestones for Crew-11, they also are preparing a SpaceX Falcon 9 rocket booster for its third flight. Once all rocket and spacecraft system checkouts are complete and all components are certified for flight, teams will mate Dragon to Falcon 9 in SpaceX’s hangar at the launch site. The integrated spacecraft and rocket will then be rolled to the pad and raised vertically for the crew’s dry dress rehearsal and an integrated static fire test before launch.
      Meet Crew-11
      The official crew portrait of NASA’s SpaceX Crew-11 members. Front row, from left, are Pilot Mike Fincke and Commander Zena Cardman, both NASA astronauts. In the back from left, are Mission Specialists Oleg Platonov of Roscosmos and Kimiya Yui of JAXA (Japan Aerospace Exploration Agency)NASA/Robert Markowitz Selected as a NASA astronaut in 2017, Cardman will conduct her first spaceflight. The Williamsburg, Virginia, native holds a bachelor’s degree in biology and a master’s degree in marine sciences from the University of North Carolina at Chapel Hill. At the time of selection, she was pursuing a doctorate in geosciences. Cardman’s geobiology and geochemical cycling research focused on subsurface environments, from caves to deep sea sediments. Since completing initial training, Cardman has supported real-time station operations and lunar surface exploration planning. Follow @zenanaut on X and @zenanaut on Instagram.
      This mission will be Fincke’s fourth trip to the space station, having logged 382 days in space and nine spacewalks during Expedition 9 in 2004, Expedition 18 in 2008, and STS-134 in 2011, the final flight of space shuttle Endeavour. Throughout the past decade, Fincke has applied his expertise to NASA’s Commercial Crew Program, advancing the development and testing of Dragon and Boeing’s Starliner spacecraft toward operational certification. The Emsworth, Pennsylvania, native is a graduate of the United States Air Force Test Pilot School and holds bachelors’ degrees from the Massachusetts Institute of Technology, Cambridge, in both aeronautics and astronautics, as well as Earth, atmospheric, and planetary sciences. He also has a master’s degree in aeronautics and astronautics from Stanford University in California. Fincke is a retired U.S. Air Force colonel with more than 2,000 flight hours in over 30 different aircraft. Follow @AstroIronMike on X and Instagram.
      With 142 days in space, this mission will be Yui’s second trip to the space station. After his selection as a JAXA astronaut in 2009, Yui flew as a flight engineer for Expedition 44/45 and became the first Japanese astronaut to capture JAXA’s H-II Transfer Vehicle using the station’s robotic arm. In addition to constructing a new experimental environment aboard Kibo, he conducted a total of 21 experiments for JAXA. In November 2016, Yui was assigned as chief of the JAXA Astronaut Group. He graduated from the School of Science and Engineering at the National Defense Academy of Japan in 1992. He later joined the Air Self-Defense Force at the Japan Defense Agency (currently the Ministry of Defense). In 2008, Yui joined the Air Staff Office at the Ministry of Defense as a lieutenant colonel. Follow @astro_kimiya on X.
      The mission will be Platonov’s first spaceflight. Before his selection as a cosmonaut in 2018, Platonov earned a degree in engineering from Krasnodar Air Force Academy in aircraft operations and air traffic management. He also earned a bachelor’s degree in state and municipal management in 2016 from the Far Eastern Federal University in Vladivostok, Russia. Assigned as a test cosmonaut in 2021, he has experience in piloting aircraft, zero gravity training, scuba diving, and wilderness survival.
      Mission Overview
      From left to right: Roscosmos cosmonaut Oleg Platonov, NASA astronauts Mike Fincke and Zena Cardman, and JAXA astronaut Kimiya Yui pictured after participating in a training simulation inside a mockup at NASA’s Johnson Space Center in HoustonNASA/Robert Markowitz Following liftoff, Falcon 9 will accelerate Dragon to approximately 17,500 mph. Once in orbit, the crew, NASA, and SpaceX mission control will monitor a series of maneuvers that will guide Dragon to the forward-facing port of the station’s Harmony module. The spacecraft is designed to dock autonomously, but the crew can pilot it manually, if necessary.
      After docking, Crew-11 will be welcomed aboard the station by the seven-member Expedition 73 crew, before conducting a short handover period on research and maintenance activities with the departing Crew-10 crew members. Then, NASA astronauts Anne McClain, Nichole Ayers, JAXA astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov will undock from the space station and return to Earth. Ahead of Crew-10’s return, mission teams will review weather conditions at the splashdown sites off the coast of California before departure from the station.
      Cardman, Fincke, and Yui will conduct scientific research to prepare for human exploration beyond low Earth orbit and benefit humanity on Earth. Participating crew members will simulate lunar landings, test strategies to safeguard vision, and advance other human spaceflight studies led by NASA’s Human Research Program. The crew also will study plant cell division and microgravity’s effects on bacteria-killing viruses, as well as perform experiments to produce a higher volume of human stem cells and generate on-demand nutrients.
      While aboard the orbiting laboratory, Crew-11 will welcome a Soyuz spacecraft in November with three new crew members, including NASA astronaut Chris Williams.  They also will bid farewell to the Soyuz carrying NASA astronaut Jonny Kim. The crew also is expected to see the arrival of the Dragon, Roscosmos Progress spacecraft, and Northrop Grumman’s Cygnus spacecraft to resupply the station.
      NASA’s SpaceX Crew-11 mission will be aboard the International Space Station on Nov. 2, when the orbiting laboratory surpasses 25 years of a continuous human presence. Since the first crew expedition arrived, the space station has enabled more than 4,000 groundbreaking experiments in the unique microgravity environment, while becoming a springboard for building a low Earth orbit economy and preparing for NASA’s future exploration of the Moon and Mars.
      Learn more about the space station, its research, and crew, at:
      https://www.nasa.gov/station

      View the full article
    • By NASA
      4 Min Read Vision Changes on Space Station
      NASA astronaut Jonny Kim, assisted by JAXA astronaut Takuya Onishi, performs an eye ultrasound on the International Space Station. Credits: NASA Science in Space July 2025
      When astronauts began spending six months and more aboard the International Space Station, they started to notice changes in their vision. For example, many found that, as their mission progressed, they needed stronger reading glasses. Researchers studying this phenomenon identified swelling in the optic disc, which is where the optic nerve enters the retina, and flattening of the eye shape. These symptoms became known as Space-Associated Neuro-Ocular Syndrome (SANS).
      NASA astronaut Suni Williams wears a cuff on her left leg as she conducts an eye exam for the Thigh Cuff investigation.NASA Microgravity causes a person’s blood and cerebrospinal fluid to shift toward the head and studies have suggested that these fluid shifts may be an underlying cause of SANS. A current investigation, Thigh Cuff, examines whether tight leg cuffs change the way fluid moves around inside the body, especially around the eyes and in the heart and blood vessels. If so, the cuffs could serve as a countermeasure against the problems associated with fluid shifts, including SANS. A simple and easy-to-use tool to counter the headward shift of body fluids could help protect astronauts on future missions to the Moon and Mars. The cuffs also could treat conditions on Earth that cause fluid to build up in the head or upper body, such as long-term bed rest and certain diseases.
      Following fluid shifts
      NASA astronaut Shane Kimbrough sets up optical coherence tomography hardware.NASA The Fluid Shifts investigation, conducted from 2015 through 2020, was the first to reveal changes in how blood drains from the brain in microgravity. Vision Impairment and Intracranial Pressure (VIIP) began testing the role those fluid shifts and resulting increased brain fluid pressure might play in the development of SANS. This research used a variety of measures including clinical eye exams with and without dilatation, imaging of the retina and associated blood vessels and nerves, noninvasive imaging to measure the thickness of retinal structures, and magnetic resonance imaging of the eye and optic nerve. In addition, approximately 300 astronauts completed questionnaires to document vision changes during their missions.
      In one paper published from the research, scientists described how these imaging techniques have improved the understanding of SANS. The authors summarized emerging research on developing a head-mounted virtual reality display that can conduct multimodal, noninvasive assessment to help diagnose SANS.
      Other researchers determined that measuring the optic nerve sheath diameter shows promise as a way to identify and quantify eye and vision changes during spaceflight. The paper also makes recommendations for standardizing imaging tools, measurement techniques, and other aspects of study design.
      Another paper reported on an individual astronaut who had more severe than usual changes after a six-month spaceflight and certain factors that may have contributed. Researchers also observed improvement in the individual’s symptoms that may have been due to B vitamin supplementation and lower cabin carbon dioxide levels following departure of some crew members. While a single case does not allow researchers to determine cause and effect, the magnitude of the improvements suggest this individual may be more affected by environmental conditions such as carbon dioxide. This may have been the first attempt to mitigate SANS with inflight B vitamin supplementation.
      Eyeball tissue stiffness
      Optical coherence tomography image of the back of the eyeball (top) and thickness of the middle wall of the eye (bottom) from the SANSORI investigation.University of Montreal SANSORI, a CSA (Canadian Space Agency) investigation, used an imaging technique called Optical Coherence Tomography to examine whether reduced stiffness of eye tissue contributes to SANS. On Earth, changes in stiffness of the tissue around the eyeball have been associated with aging and conditions such as glaucoma and myopia. Researchers found that long-duration spaceflight affected the mechanical properties of eye tissues, which could contribute to the development of SANS. This finding could improve understanding of eye changes during spaceflight and in aging patients on Earth.
      Genetic changes, artificial gravity
      The MHU-8 investigation from JAXA (Japan Aerospace Exploration Agency), which examined changes in DNA and gene expression in mice after spaceflight, found changes in the optic nerve and retinal tissue. Researchers also found that artificial gravity may reduce these changes and could serve as a countermeasure on future missions.
      These and other studies ultimately could help researchers prevent, diagnose, and treat vision impairment in crew members and people on Earth.
      Keep Exploring Discover More Topics From NASA
      Humans In Space
      Latest News from Space Station Research
      Space Station Research and Technology Tools and Information
      Space Station Research Results
      View the full article
    • By NASA
      NASA/Jonny Kim In this June 13, 2025, photo, NASA astronaut Anne McClain shows off a hamburger-shaped cake to celebrate 200 cumulative days in space for JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi since his first spaceflight as an Expedition 48-49 Flight Engineer in 2016.
      Onishi and McClain launched to the International Space Station along with NASA astronaut Nichole Ayers and Roscosmos cosmonaut Kirill Peskov on March 14, 2025, as part of the Crew-10 mission. Aboard the orbital laboratory, the Crew-10 members conduct scientific research to prepare for human exploration beyond low Earth orbit and benefit humanity on Earth. McClain and Ayers also performed a spacewalk on May 1, 2025 – McClain’s third and Ayers’ first.
      Check out the International Space Station blog to follow the crew’s research and other activities.
      Image credit: NASA/Jonny Kim
      View the full article
    • By NASA
      A collaboration between NASA and the Indian Space Research Organisation, NISAR will use synthetic aperture radar to monitor nearly all the planet’s land- and ice-covered surfaces twice every 12 days.Credit: NASA NASA will host a news conference at 12 p.m. EDT Monday, July 21, to discuss the upcoming NISAR (NASA-ISRO Synthetic Aperture Radar) mission.
      The Earth-observing satellite, a first-of-its-kind collaboration between NASA and ISRO (Indian Space Research Organisation), carries an advanced radar system that will help protect communities by providing a dynamic, three-dimensional view of Earth in unprecedented detail and detecting the movement of land and ice surfaces down to the centimeter.
      The NISAR mission will lift off from ISRO’s Satish Dhawan Space Centre in Sriharikota, on India’s southeastern coast. Launch is targeted for no earlier than late July.
      NASA’s Jet Propulsion Laboratory in Southern California will stream the briefing live on its X, Facebook, and YouTube channels. Learn how to watch NASA content through a variety of platforms, including social media.
      Participants in the news conference include:
      Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters Karen St. Germain, director, Earth Science Division, NASA Headquarters Wendy Edelstein, deputy project manager, NISAR, NASA JPL Paul Rosen, project scientist, NISAR, NASA JPL To ask questions by phone, members of the media must RSVP no later than two hours before the start of the event to: rexana.v.vizza@jpl.nasa.gov. NASA’s media accreditation policy is available online. Questions can be asked on social media during the briefing using #AskNISAR.
      With its two radar instruments — an S-band system provided by ISRO and an L-band system provided by NASA — NISAR will use a technique known as synthetic aperture radar (SAR) to scan nearly all the planet’s land and ice surfaces twice every 12 days. Each system’s signal is sensitive to different sizes of features on Earth’s surface, and each specializes in measuring different attributes, such as moisture content, surface roughness, and motion.
      These capabilities will help scientists better understand processes involved in natural hazards and catastrophic events, such as earthquakes, volcanic eruptions, land subsidence, and landslides.
      Additionally, NISAR’s cloud penetrating ability will aid urgent responses to communities during weather disasters such as hurricanes, storm surge, and flooding. The detailed maps the mission creates also will provide information on both gradual and sudden changes occurring on Earth’s land and ice surfaces.
      Managed by Caltech for NASA, JPL leads the U.S. component of the NISAR project and provided the L-band SAR. NASA JPL also provided the radar reflector antenna, the deployable boom, a high-rate communication subsystem for science data, GPS receivers, a solid-state recorder, and payload data subsystem. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the Near Space Network, which will receive NISAR’s L-band data.
      Multiple ISRO centers have contributed to NISAR. The Space Applications Centre is providing the mission’s S-band SAR. The U R Rao Satellite Centre provided the spacecraft bus. The rocket is from Vikram Sarabhai Space Centre, launch services are through Satish Dhawan Space Centre, and satellite mission operations are by the ISRO Telemetry Tracking and Command Network. The National Remote Sensing Centre is responsible for S-band data reception, operational products generation, and dissemination.
      To learn more about NISAR, visit:
      https://nisar.jpl.nasa.gov
      -end-
      Karen Fox / Elizabeth Vlock
      Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / elizabeth.a.vlock@nasa.gov
      Andrew Wang / Scott Hulme
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-379-6874 / 818-653-9131
      andrew.wang@jpl.nasa.gov / scott.d.hulme@jpl.nasa.gov
      Share
      Details
      Last Updated Jul 16, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      NISAR (NASA-ISRO Synthetic Aperture Radar) Earth Science Division Goddard Space Flight Center Jet Propulsion Laboratory Near Space Network Science Mission Directorate View the full article
    • By NASA
      6 Min Read NASA’s TRACERS Studies Explosive Process in Earth’s Magnetic Shield
      High above us, particles from the Sun hurtle toward Earth, colliding with the upper atmosphere and creating powerful explosions in a murky process called magnetic reconnection. A single magnetic reconnection event can release as much energy as the entire United States uses in a day.
      NASA’s new TRACERS (Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites) mission will study magnetic reconnection, answering key questions about how it shapes the impacts of the Sun and space weather on our daily lives.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      NASA’s TRACERS mission, or the Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites, will fly in low Earth orbit through the polar cusps, funnel-shaped holes in the magnetic field, to study magnetic reconnection and its effects in Earth’s atmosphere. NASA’s Goddard Space Flight Center The TRACERS spacecraft are slated to launch no earlier than late July 2025 aboard a SpaceX Falcon 9 rocket from Space Launch Complex 4 East at Vandenberg Space Force Base in California. The two TRACERS spacecraft will orbit Earth to study how the solar wind — a continuous outpouring of electrically charged particles from the Sun — interacts with Earth’s magnetic shield, the magnetosphere.
      What Is Magnetic Reconnection?
      As solar wind flows out from the Sun, it carries the Sun’s embedded magnetic field out across the solar system. Reaching speeds over one million miles per hour, this soup of charged particles and magnetic field plows into planets in its path.
      “Earth’s magnetosphere acts as a protective bubble that deflects the brunt of the solar wind’s force. You can think of it as a bar magnet that’s rotating and floating around in space,” said John Dorelli, TRACERS mission science lead at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “As the solar wind collides with Earth’s magnetic field, this interaction builds up energy that can cause the magnetic field lines to snap and explosively fling away nearby particles at high speeds — this is magnetic reconnection.”
      Openings in Earth’s magnetic field at the North and South Poles, called polar cusps, act as funnels allowing charged particles to stream down towards Earth and collide with atmospheric gases. These phenomena are pieces of the space weather system that is in constant motion around our planet — whose impacts range from breathtaking auroras to disruption of communications systems and power grids. In May 2024, Earth experienced the strongest geomagnetic storm in over 20 years, which affected high-voltage power lines and transformers, forced trans-Atlantic flights to change course, and caused GPS-guided tractors to veer off-course.
      How Will TRACERS Study Magnetic Reconnection?
      The TRACERS mission’s twin satellites, each a bit larger than a washing machine, will fly in tandem, one behind the other, in a relatively low orbit about 360 miles above Earth. Traveling over 16,000 mph, each satellite hosts a suite of instruments to measure different aspects of extremely hot, ionized gas called plasma and how it interacts with Earth’s magnetosphere.
      An artist’s concept of the twin TRACERS satellites in orbit above Earth. NASA’s Goddard Space Flight Center The satellites will focus where Earth’s magnetic field dips down to the ground at the North polar cusp. By placing the twin TRACERS satellites in a Sun-synchronous orbit, they always pass through Earth’s dayside polar cusp, studying thousands of reconnection events at these concentrated areas.
      This will build a step-by-step picture of how magnetic reconnection changes over time and from Earth’s dayside to its nightside.
      NASA’s TRICE-2 mission also studied magnetic reconnection near Earth, but with a pair of sounding rockets launched into the northern polar cusp over the Norwegian Sea in 2018.
      “The TRICE mission took great data. It took a snapshot of the Earth system in one state. It proved that these instruments could make this kind of measurement and achieve this kind of science,” said David Miles, TRACERS principal investigator at the University of Iowa. “But the system’s more complicated than that. The TRACERS mission demonstrates how you can use multi-spacecraft technology to get a picture of how things are moving and evolving.”
      The TRACERS mission demonstrates how you can use multi-spacecraft technology to get a picture of how things are moving and evolving.
      DAVID MILES
      TRACERS principal investigator, University of Iowa
      Since previous missions could only take one measurement of an event per launch, too many changes in the region prevented forming a full picture. Following each other closely in orbit, the twin TRACERS satellites will provide multiple snapshots of the same area in rapid succession, spaced as closely as 10 seconds apart from each other, reaching a record-breaking 3,000 measurements in one year. These snapshots will build a picture of how the whole Earth system behaves in reaction to space weather, allowing scientists to better understand how to predict space weather in the magnetosphere.
      Working Across Missions in Solar Harmony
      The TRACERS mission will collaborate with other NASA heliophysics missions, which are strategically placed near Earth and across the solar system. At the Sun, NASA’s Parker Solar Probe closely observes our closest star, including magnetic reconnection there and its role in heating and accelerating the solar wind that drives the reconnection events investigated by TRACERS.
      Data from recently launched NASA missions, EZIE (Electrojet Zeeman Imaging Explorer), studying electrical currents at Earth’s nightside, and PUNCH (Polarimeter to Unify the Corona and Heliosphere) studying the solar wind and interactions in Earth’s atmosphere, can be combined with observations from TRACERS. With research from these missions, scientists will be able to get a more complete understanding of how and when Earth’s protective magnetic shield can suddenly connect with solar wind, allowing the Sun’s material into Earth’s system.
      “The TRACERS mission will be an important addition to NASA’s heliophysics fleet.” said Reinhard Friedel, TRACERS program scientist at NASA Headquarters in Washington. “The missions in the fleet working together increase understanding of our closest star to improve our ability to understand, predict, and prepare for space weather impacts on humans and technology in space.”
      The TRACERS mission is led by David Miles at the University of Iowa with support from the Southwest Research Institute in San Antonio, Texas. NASA’s Heliophysics Explorers Program Office at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the mission for the agency’s Heliophysics Division at NASA Headquarters in Washington. The University of Iowa, Southwest Research Institute, University of California, Los Angeles, and the University of California, Berkeley, all lead instruments on TRACERS that study changes in the magnetic field and electric field. NASA’s Launch Services Program, based at the agency’s Kennedy Space Center in Florida, manages the VADR (Venture-class Acquisition of Dedicated and Rideshare) contract.
      by Desiree Apodaca
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Header Image:
      An artist’s concept of the TRACERS mission, which will help research magnetic reconnection and its effects in Earth’s atmosphere.
      Credits: Andy Kale
      Share








      Details
      Last Updated Jul 16, 2025 Related Terms
      Goddard Space Flight Center Earth’s Magnetic Field Heliophysics Heliophysics Division The Sun The Sun & Solar Physics TRACERS Explore More
      4 min read Linking Satellite Data and Community Knowledge to Advance Alaskan Snow Science


      Article


      2 days ago
      2 min read Hubble Snaps Galaxy Cluster’s Portrait


      Article


      5 days ago
      7 min read NASA’s Parker Solar Probe Snaps Closest-Ever Images to Sun
      On its record-breaking pass by the Sun late last year, NASA’s Parker Solar Probe captured…


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
  • Check out these Videos

×
×
  • Create New...