Jump to content

Seed Funding Proposals Due November 19 This Year!


Recommended Posts

  • Publishers
Posted

Since it began in 2020, NASA’s Citizen Science Seed Funding Program (CSSFP) has helped twenty-four new NASA citizen science projects get off the ground. This one-year funding opportunity aims to expand the pool of professional scientists who use citizen science techniques in their science investigations. We’d like to remind you about two key changes to the CSSFP program this year!

First, we heard that researchers could make better use of seed funding if it arrived in time to enable work during the summer — a crucial season for students, faculty, and interns.  To address this need, NASA is shifting the submission and review process to earlier in the year. The planning start date for CSSFP investigations for this next round is now May 1, 2025! Of course, an earlier start date means an earlier due date, so this year’s CSSFP proposals will be due November 19, 2024. Proposers are also asked to submit a Notice of Intent (optional) by October 1, 2024 to aid in planning the review panels. 

Second, if you are a current CSSFP grant recipient, you have the opportunity to request a No Cost Extension, which will allow you to continue spending your remaining funding during a second year. However, please note: the NASA Shared Services Center will reject late requests! All no-cost extension requests must be received more than 10 calendar days prior to the end date of your grant’s period of performance. Please check that date and be sure to submit your No Cost Extension requests more than 10 days prior.

We’re excited to receive your proposals and can’t wait to help you do NASA science with fantastic volunteers from around the world!

Previous Awards

2023 CSSFP Awards

2022 CSSFP Awards

2021 CSSFP Awards

seed-funding-proposals.png?w=1510
NASA’s Citizen Science Seed Funding Program can help your project grow–like the seedlings in NASA’s Growing Beyond Earth Citizen Science project!
Credit: Growing Beyond Earth

Share

Details

Last Updated
Jul 22, 2024

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A lot can change in a year for Earth’s forests and vegetation, as springtime and rainy seasons can bring new growth, while cooling temperatures and dry weather can bring a dieback of those green colors. And now, a novel type of NASA visualization illustrates those changes in a full complement of colors as seen from space.
      Researchers have now gathered a complete year of PACE data to tell a story about the health of land vegetation by detecting slight variations in leaf colors. Previous missions allowed scientists to observe broad changes in chlorophyll, the pigment that gives plants their green color and also allows them to perform photosynthesis. But PACE now allows scientists to see three different pigments in vegetation: chlorophyll, anthocyanins, and carotenoids. The combination of these three pigments helps scientists pinpoint even more information about plant health. Credit: NASA’s Goddard Space Flight Center NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) satellite is designed to view Earth’s microscopic ocean plants in a new lens, but researchers have proved its hyperspectral use over land, as well.
      Previous missions measured broad changes in chlorophyll, the pigment that gives plants their green color and also allows them to perform photosynthesis. Now, for the first time, PACE measurements have allowed NASA scientists and visualizers to show a complete year of global vegetation data using three pigments: chlorophyll, anthocyanins, and carotenoids. That multicolor imagery tells a clearer story about the health of land vegetation by detecting the smallest of variations in leaf colors.
      “Earth is amazing. It’s humbling, being able to see life pulsing in colors across the whole globe,” said Morgaine McKibben, PACE applications lead at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “It’s like the overview effect that astronauts describe when they look down at Earth, except we are looking through our technology and data.”
      Anthocyanins, carotenoids, and chlorophyll data light up North America, highlighting vegetation and its health.Credit: NASA’s Scientific Visualization Studio Anthocyanins are the red pigments in leaves, while carotenoids are the yellow pigments – both of which we see when autumn changes the colors of trees. Plants use these pigments to protect themselves from fluctuations in the weather, adapting to the environment through chemical changes in their leaves. For example, leaves can turn more yellow when they have too much sunlight but not enough of the other necessities, like water and nutrients. If they didn’t adjust their color, it would damage the mechanisms they have to perform photosynthesis.
      In the visualization, the data is highlighted in bright colors: magenta represents anthocyanins, green represents chlorophyll, and cyan represents carotenoids. The brighter the colors are, the more leaves there are in that area. The movement of these colors across the land areas show the seasonal changes over time.
      In areas like the evergreen forests of the Pacific Northwest, plants undergo less seasonal change. The data highlights this, showing comparatively steadier colors as the year progresses.
      The combination of these three pigments helps scientists pinpoint even more information about plant health.
      “Shifts in these pigments, as detected by PACE, give novel information that may better describe vegetation growth, or when vegetation changes from flourishing to stressed,” said McKibben. “It’s just one of many ways the mission will drive increased understanding of our home planet and enable innovative, practical solutions that serve society.”
      The Ocean Color Instrument on PACE collects hyperspectral data, which means it observes the planet in 100 different wavelengths of visible and near infrared light. It is the only instrument – in space or elsewhere – that provides hyperspectral coverage around the globe every one to two days. The PACE mission builds on the legacy of earlier missions, such as Landsat, which gathers higher resolution data but observes a fraction of those wavelengths.
      In a paper recently published in Remote Sensing Letters, scientists introduced the mission’s first terrestrial data products.
      “This PACE data provides a new view of Earth that will improve our understanding of ecosystem dynamics and function,” said Fred Huemmrich, research professor at the University of Maryland, Baltimore County, member of the PACE science and applications team, and first author of the paper. “With the PACE data, it’s like we’re looking at a whole new world of color. It allows us to describe pigment characteristics at the leaf level that we weren’t able to do before.”
      As scientists continue to work with these new data, available on the PACE website, they’ll be able to incorporate it into future science applications, which may include forest monitoring or early detection of drought effects.
      By Erica McNamee
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Jun 05, 2025 EditorKate D. RamsayerContactKate D. Ramsayerkate.d.ramsayer@nasa.gov Related Terms
      Earth Goddard Space Flight Center PACE (Plankton, Aerosol, Cloud, Ocean Ecosystem) Explore More
      4 min read Tundra Vegetation to Grow Taller, Greener Through 2100, NASA Study Finds
      Article 10 months ago 8 min read NASA Researchers Study Coastal Wetlands, Champions of Carbon Capture
      In the Florida Everglades, NASA’s BlueFlux Campaign investigates the relationship between tropical wetlands and greenhouse…
      Article 3 months ago 5 min read NASA Takes to the Air to Study Wildflowers
      Article 2 months ago View the full article
    • By European Space Agency
      Europe’s space industry gathered at the European Space Agency (ESA) in the Netherlands on 3–4 April to gain insights into the future of space in Europe.
      View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The space shuttle Endeavour is seen on launch pad 39a as a storm passes by prior to the rollback of the Rotating Service Structure (RSS), Thursday, April 28, 2011, at Kennedy Space Center in Cape Canaveral, Fla. During the 14-day mission, Endeavour and the STS-134 crew will deliver the Alpha Magnetic Spectrometer (AMS) and spare parts including two S-band communications antennas, a high-pressure gas tank and additional spare parts for Dextre. Launch is targeted for Friday, April 29 at 3:47 p.m. EDT.NASA It is important to protect humans from unintended electrical current flow during spaceflight. The thresholds for contact electrical shock are well established, and standards and requirements exist that minimize the probability of contact electrical shock. Current thresholds were chosen (vs. voltage thresholds) because body impedance varies depending on conditions such as wet/dry, AC/DC, voltage level, large/small contact area, but current thresholds and physiological effects do not change. By addressing electrical thresholds, engineering teams are able to provide the appropriate hazard controls, usually through additional isolation (beyond the body’s impedance), current limiters, and/or modifying the voltage levels. Risk assessment determined that the probability of an event was extremely low, and the most serious consequence is expected to be involuntary muscle contraction.
      Lightning strikes the Launch Pad 39B protection system as preparations for launch of NASA’s Space Launch System (SLS) rocket with the Orion spacecraft aboard continue, Saturday, Aug. 27, 2022, at NASA’s Kennedy Space Center in Florida. NASA’s Artemis I flight test is the first integrated test of the agency’s deep space exploration systems: the Orion spacecraft, SLS rocket, and supporting ground systems. Launch of the uncrewed flight test is targeted for no earlier than Aug. 29 at 8:33 a.m. ET. Photo Credit: (NASA/Bill Ingalls) Directed Acyclic Graph Files
      + DAG File Information (HSRB Home Page)
      + Electrical Shock Risk DAG and Narrative (PDF)
      + Electrical Shock Risk DAG Code (TXT)
      Human System Risks Share
      Details
      Last Updated Mar 11, 2025 EditorRobert E. LewisLocationJohnson Space Center Related Terms
      Human Health and Performance Human System Risks Explore More
      1 min read Risk of Toxic Substance Exposure
      Article 15 mins ago 1 min read Risk of Urinary Retention
      Article 15 mins ago 1 min read Risk to Vehicle Crew Egress Capability and Task Performance as Applied to Earth and Extraterrestrial Landings
      Article 14 mins ago Keep Exploring Discover More Topics From NASA
      Humans In Space
      Missions
      International Space Station
      Solar System
      View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA astronaut and Expedition 65 Flight Engineer Mark Vande Hei sets up the International Space Station’s exercise bicycle, also known as the Cycle Ergometer with Vibration Isolation and Stabilization (CEVIS), inside the U.S. Destiny laboratory module. Vande Hei later strapped himself on the CEVIS and attached sensors to himself for a workout study measuring aerobic capacity in space.NASA Exposure to the microgravity environment causes muscle size, strength, and endurance to decline. Based on ISS data, if crew adhere to the exercise schedule and have access to adequate exercise countermeasure systems then on average, they return with minimal losses of muscle size, strength, and endurance. New exploration countermeasures systems will be different from ISS and may not have the capability to support exercise as required to maintain human performance.
      On Challenger’s middeck, Mission Specialist Guion “Guy” Bluford, assists Dr. William E. Thornton (out of frame) with a medical test that requires use of the treadmill exercising device designed for spaceflight by the STS-8 medical doctor on Sept. 5, 1983. Forward lockers with data recording units and checklist notebooks are to the left of Bluford. Guy Bluford was the first African-American astronaut to fly into space. Directed Acyclic Graph Files
      + DAG File Information (HSRB Home Page)
      + Muscle Risk DAG and Narrative (PDF)
      + Muscle Risk DAG Code (TXT)
      Human Research Roadmap
      + Risk of Impaired Performance Due to Reduced Muscle Size, Strength & Endurance
      + 2015 March Evidence Report (PDF)
      Human System Risks Share
      Details
      Last Updated Mar 11, 2025 EditorRobert E. LewisLocationJohnson Space Center Related Terms
      Human Health and Performance Human System Risks Explore More
      1 min read Risk of Ineffective or Toxic Medications During Long-Duration Exploration Spaceflight
      Article 23 mins ago 1 min read Risk of Mission Impacting Injury and Compromised Performance and Long-Term Health Effects due to EVA Operations (EVA Risk)
      Article 23 mins ago 1 min read Risk of In-Mission Injury and Performance Decrements and Long-term Health Effects due to Dynamic Loads (Dynamic Loads Risk)
      Article 23 mins ago Keep Exploring Discover More Topics From NASA
      Humans In Space
      Missions
      International Space Station
      Solar System
      View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA astronaut Anne McClain is inside the Destiny laboratory module surrounded by exercise gear, including laptop computers and sensors that measure physical exertion and aerobic capacity, during a workout session aboard the International Space Station. NASA Spaceflight causes measures of maximum aerobic capacity to decline, which can result in impaired mission task performance. Based on ISS data, if crew adhere to existing exercise schedules and have access to adequate exercise countermeasure systems, then on average, they return with minimal losses of aerobic fitness. New exploration countermeasures systems will be different from ISS and may not have the capability to support exercise as required to maintain human performance.
      Directed Acyclic Graph Files
      + DAG File Information (HSRB Home Page)
      + Aerobic Risk DAG and Narrative (PDF)
      + Aerobic Risk DAG Code (TXT)
      Human Research Roadmap
      + Risk of Reduced Physical Performance Capabilities Due to Reduced Aerobic Capacity
      + 2015 March HRP Evidence Report (PDF)
      Human System Risks Share
      Details
      Last Updated Mar 11, 2025 EditorRobert E. LewisLocationJohnson Space Center Related Terms
      Human Health and Performance Human System Risks Explore More
      1 min read Risk of Spaceflight Associated Neuro-ocular Syndrome
      Article 16 mins ago 1 min read Risk of Renal Stone Formation
      Article 16 mins ago 1 min read Risk of Toxic Substance Exposure
      Article 15 mins ago Keep Exploring Discover More Topics From NASA
      Humans In Space
      Missions
      International Space Station
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...