Jump to content

Recommended Posts

  • Publishers
Posted

Main Takeaways:

  • New 66-foot-wide antenna dishes will be built, online, and operational in time to provide near-continuous communications services to Artemis astronauts at the Moon later this decade.
  • Called LEGS, short for Lunar Exploration Ground Sites, the antennas represent critical infrastructure for NASA’s vision of supporting a sustained human presence at the Moon.
  • The first three of six proposed LEGS are planned for sites in New Mexico, South Africa, and Australia.
  • LEGS will become part of NASA’s Near Space Network, managed by the agency’s Space Communications and Navigation (SCaN) program and led out of Goddard Space Flight Center in Greenbelt, Maryland.

Background:

NASA’s LEGS can do more than help Earthlings move about the planet.

Three Lunar Exploration Ground Sites, or LEGS, will enhance the Near Space Network’s communications services and support of NASA’s Artemis campaign.

NASA’s Space Communications and Navigation (SCaN) program maintains the agency’s two primary communications networks — the Deep Space Network and the Near Space Network, which enable satellites in space to send data back to Earth for investigation and discovery.

Using antennas around the globe, these networks capture signals from satellites, collecting data and enabling navigation engineers to track the mission. For the first Artemis mission, these networks worked in tandem to support the mission as it completed its 25-day journey around the Moon. They will do the same for the upcoming Artemis II mission.

To support NASA’s Moon to Mars initiative, NASA is adding three new LEGS antennas to the Near Space Network. As NASA works toward sustaining a human presence on the Moon, communications and navigation support will be crucial to each mission’s success. The LEGS antennas will directly support the later Artemis missions, and accompanying missions like the human landing system, lunar terrain vehicle, and Gateway.

A graphic with a dark background and stars, picturing the Gateway space station concept.
The Gateway space station will be humanity’s first space station in lunar orbit as a vital component of the Artemis missions to return humans to the Moon for scientific discovery and chart a path for humans to Mars.
NASA

“One of the main goals of LEGS is to offload the Deep Space Network,” said TJ Crooks, LEGS project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “The Near Space Network and its new LEGS antennas will focus on lunar missions while allowing the Deep Space Network to support missions farther out into the solar system — like the James Webb Space Telescope and the interstellar Voyager missions.”

The Near Space Network provides communications and navigation services to missions anywhere from near Earth to 1.2 million miles away — this includes the Moon and Sun-Earth Lagrange points 1 and 2. The Moon and Lagrange points are a shared region with the Deep Space Network, which can provide services to missions there and farther out in the solar system.

Artist rendering of a Lunar Terrain Vehicle on the surface of the Moon carrying two astronauts.
An artist’s rendering of a lunar terrain vehicle on the surface of the Moon.
NASA

The LEGS antennas, which are 66 feet in diameter, will be strategically placed across the globe. This global placement ensures that when the Moon is setting at one station, it is rising into another’s view. With the Moon constantly in sight, the Near Space Network will be able to provide continuous support for lunar operations.

How it Works:

As a satellite orbits the Moon, it encodes its data onto a radio frequency signal. When a LEGS antenna comes into view, that satellite (or rover, etc.) will downlink the signal to a LEGS antenna. This data is then routed to mission operators and scientists around the globe who can make decisions about spacecraft health and orbit or use the science data to make discoveries.

The LEGS antennas are intended to be extremely flexible for users. For LEGS-1, LEGS-2, and LEGS-3, NASA is implementing a “dual-band approach” for the antennas that will allow missions to communicate using two different radio frequency bands — X-band and Ka-band. Typically, smaller data packets — like telemetry data — are sent over X-band, while high-resolution science data or imagery needs Ka-band. Due to its higher frequency, Ka-band allows significantly more information to be downlinked at once, such as real-time high-resolution video in support of crewed operations.

A graphic with a dark background and stars, with the following antennas pictured above the Earth from left to right: Deep Space Network Madrid, LEGS 1, LEGS 2, Deep Space Network Goldstone, Deep Space Network Canberra, LEGS 3. Legs 2 – in the center of the graphic – has five blue relay lines going toward images of the lunar surface mission, human landing system, Gateway, and two satellites depicting future non-lunar missions.
LEGS will directly support the Artemis campaign, including the Lunar Gateway, human landing system (HLS), and lunar terrain vehicle (LTV).
NASA

Further LEGS capacity will be sought from commercial service providers and will include a “tri-band approach” for the antennas using S-band in addition to X- and Ka-band.

The first LEGS ground station, or LEGS-1, is at NASA’s White Sands Complex in Las Cruces, New Mexico. NASA is improving land and facilities at the complex to receive the new LEGS-1 antenna.

The LEGS-2 antenna will be in Matjiesfontein, South Africa, located near Cape Town. In partnership with SANSA, the South African National Space Agency, NASA chose this location to maximize coverage to the Moon. South Africa was home to a ground tracking station outside Johannesburg that played a role in NASA’s Apollo missions to the Moon in the 1960s. The agency plans to complete the LEGS-2 antenna in 2026. For LEGS-3, NASA is exploring locations in Western Australia.

These stations will fully complement the existing capabilities of the Near and Deep Space Networks and allow for more robust communications services to the Artemis campaign.

The Near Space Network is funded by NASA’s Space Communications and Navigation (SCaN) program office at NASA Headquarters in Washington and operated out of NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

About the Author

Kendall Murphy

Kendall Murphy

Technical Writer

Kendall Murphy is a technical writer for the Space Communications and Navigation program office. She specializes in internal and external engagement, educating readers about space communications and navigation technology.

5 Min Read

Ground Antenna Trio to Give NASA’s Artemis Campaign ‘LEGS’ to Stand On

An artist’s rendering of astronauts working near NASA’s Artemis base camp, complete with a rover and RV.
An artist’s rendering of astronauts working near NASA’s Artemis base camp, complete with a rover and RV.
Credits: NASA

Share

Details

Last Updated
Jul 22, 2024
Editor
Katherine Schauer
Contact
Kendall Murphy
Location
Goddard Space Flight Center

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      An artist’s concept design of NASA’s Lunar Terrain Vehicle.Credit: NASA NASA has selected three instruments to travel to the Moon, with two planned for integration onto an LTV (Lunar Terrain Vehicle) and one for a future orbital opportunity.
      The LTV is part of NASA’s efforts to explore the lunar surface as part of the Artemis campaign and is the first crew-driven vehicle to operate on the Moon in more than 50 years. Designed to hold up to two astronauts, as well as operate remotely without a crew, this surface vehicle will enable NASA to achieve more of its science and exploration goals over a wide swath of lunar terrain.
      “The Artemis Lunar Terrain Vehicle will transport humanity farther than ever before across the lunar frontier on an epic journey of scientific exploration and discovery,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “By combining the best of human and robotic exploration, the science instruments selected for the LTV will make discoveries that inform us about Earth’s nearest neighbor as well as benefit the health and safety of our astronauts and spacecraft on the Moon.”
      The Artemis Infrared Reflectance and Emission Spectrometer (AIRES) will identify, quantify, and map lunar minerals and volatiles, which are materials that evaporate easily, like water, ammonia, or carbon dioxide. The instrument will capture spectral data overlaid on visible light images of both specific features of interest and broad panoramas to discover the distribution of minerals and volatiles across the Moon’s south polar region. The AIRES instrument team is led by Phil Christensen from Arizona State University in Tempe.
      The Lunar Microwave Active-Passive Spectrometer (L-MAPS) will help define what is below the Moon’s surface and search for possible locations of ice. Containing both a spectrometer and a ground-penetrating radar, the instrument suite will measure temperature, density, and subsurface structures to more than 131 feet (40 meters) below the surface. The L-MAPS instrument team is led by Matthew Siegler from the University of Hawaii at Manoa.
      When combined, the data from the two instruments will paint a picture of the components of the lunar surface and subsurface to support human exploration and will uncover clues to the history of rocky worlds in our solar system. The instruments also will help scientists characterize the Moon’s resources, including what the Moon is made of, potential locations of ice, and how the Moon changes over time.
      In addition to the instruments selected for integration onto the LTV, NASA also selected the Ultra-Compact Imaging Spectrometer for the Moon (UCIS-Moon) for a future orbital flight opportunity. The instrument will provide regional context to the discoveries made from the LTV. From above, UCIS-Moon will map the Moon’s geology and volatiles and measure how human activity affects those volatiles. The spectrometer also will help identify scientifically valuable areas for astronauts to collect lunar samples, while its wide-view images provide the overall context for where these samples will be collected. The UCIS-Moon instrument will provide the Moon’s highest spatial resolution data of surface lunar water, mineral makeup, and thermophysical properties. The UCIS-Moon instrument team is led by Abigail Fraeman from NASA’s Jet Propulsion Laboratory in Southern California.
      “Together, these three scientific instruments will make significant progress in answering key questions about what minerals and volatiles are present on and under the surface of the Moon,” said Joel Kearns, deputy associate administrator for Exploration, Science Mission Directorate at NASA Headquarters. “With these instruments riding on the LTV and in orbit, we will be able to characterize the surface not only where astronauts explore, but also across the south polar region of the Moon, offering exciting opportunities for scientific discovery and exploration for years to come.”
      Leading up to these instrument selections, NASA has worked with all three lunar terrain vehicle vendors – Intuitive Machines, Lunar Outpost, and Venturi Astrolab – to complete their preliminary design reviews. This review demonstrates that the initial design of each commercial lunar rover meets all of NASA’s system requirements and shows that the correct design options have been selected, interfaces have been identified, and verification methods have been described. NASA will evaluate the task order proposals received from each LTV vendor and make a selection decision on the demonstration mission by the end of 2025. 
      Through Artemis, NASA will address high priority science questions, focusing on those that are best accomplished by on-site human explorers on and around the Moon by using robotic surface and orbiting systems. The Artemis missions will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
      To learn more about Artemis, visit:
      https://www.nasa.gov/artemis
      -end-
      Karen Fox / Molly Wasser
      Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      Share
      Details
      Last Updated Jul 10, 2025 LocationNASA Headquarters Related Terms
      Artemis Earth's Moon Science Mission Directorate View the full article
    • By NASA
      2 Min Read I Am Artemis: Joe Pavicic
      Listen to this audio excerpt from Joe Pavicic, Artemis operations project engineer
      0:00 / 0:00
      Your browser does not support the audio element. Joe Pavicic will never forget when he told the Artemis launch director teams were NO-GO for launch.
      Before Artemis I lifted off from NASA’s Kennedy Space Center in Florida in November 2022, the launch team made multiple launch attempts the months prior.  
      “During a previous Artemis I launch attempt, there was an issue with engine three,” said Pavicic, operations project engineer who worked on the engines console during Artemis I. “One sensor was showing that it wasn’t seeing liquid hydrogen through it. It was showing that it was at ambient temperature.”
      And I had to tell the launch director, ‘We can't get there today with the current criteria that we have. My recommendation is a NO-GO.’
      Joe pavicic
      Operations Project Engineer
      Prior to engine ignition, launch team controllers must first chill the engines before the cryogenic liquid propellant fuels and lifts the SLS (Space Launch System) rocket and Orion spacecraft into the heavens and onward to the Moon. Chilling the engines ensures the hardware doesn’t get damaged when exposed to the super-cooled liquid hydrogen at -423 degrees Fahrenheit.   
      NASA/Kim Shiflett “We tried everything we could think of,” Pavicic recalls. “Any procedure we could try, we tried it, and we just never saw those rates that we should have.” 
      Thus, Pavicic, who is originally from West Palm Beach and studied aerospace engineering at Embry Riddle Aeronautical University in Daytona Beach, Florida, went back to the drawing board with the rest of his team, working days and nights rewriting procedures and learning new lessons about the engines and sensors until they were finally able to get to a successful launch. 

      “I just remember after I said, 'NO-GO,' I felt like all these people came to watch the launch, all my family, and I'm like, ‘I'm the guy,' but I told myself, ‘I'm not going to be the one to say this for the next launch attempt. I'm going to do what I can to get us there.’ 
      joe pavicic
      Operations Project Engineer
      NASA successfully launched and flew the Artemis I mission and now, Pavicic is working as one of the operations project engineers, continuing to help the launch team develop new launch commit criteria and procedures within the launch countdown ahead of Artemis II, the first crewed Artemis mission, which will send four astronauts around the Moon and back in 10 days next year.  
      About the Author
      Antonia Jaramillo

      Share
      Details
      Last Updated Jul 09, 2025 Related Terms
      Kennedy Space Center Artemis Exploration Ground Systems I Am Artemis Explore More
      3 min read Aaisha Ali: From Marine Biology to the Artemis Control Room 
      Article 2 days ago 2 min read NASA Announces Winners of 2025 Human Lander Challenge
      Article 2 weeks ago 4 min read I Am Artemis: Patrick Junen
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      2 min read
      Polar Tourists Give Positive Reviews to NASA Citizen Science in Antarctica
      Citizen science projects result in an overwhelmingly positive impact on the polar tourism experience. That’s according to a new paper analyzing participant experiences in the first two years of FjordPhyto, a NASA Citizen Science project..  
      The FjordPhyto citizen science project invites travelers onboard expedition cruise vessels to gather data and samples during the polar summer season, helping researchers understand changes in microalgae communities in response to melting glaciers. Travelers in Antarctica from November to March help collect phytoplankton and ocean data from polar regions facilitated by trained expedition guides. 
      The new research found that ninety-seven percent of respondents reported that participating in citizen science enriched their travel experience. The paper provides a first understanding of the impact of citizen science projects on the tourism experience.  
      “I was worried that I would feel guilty being a tourist in a place as remote and untouched as Antarctica,” said one anonymous FjordPhyto participant. “But being able to learn and be a part of citizen science, whilst constantly being reminded of our environmental responsibilities, made me feel less like just a visitor and more a part of keeping the science culture that Antarctica is known for alive and well.” 
      For more information and to sign up, visit the FjordPhyto website. 
      Travelers in Antarctica participate in collecting phytoplankton and ocean data from polar regions facilitated by trained expedition guides. Credit: Mathew Farrell courtesy of Robert Gilmore Share








      Details
      Last Updated Jul 09, 2025 Related Terms
      Citizen Science Earth Science Earth Science Division Ice & Glaciers Explore More
      2 min read NASA Citizen Scientists Find New Eclipsing Binary Stars


      Article


      2 weeks ago
      2 min read Live or Fly a Plane in California? Help NASA Measure Ozone Pollution!


      Article


      2 weeks ago
      5 min read NASA Launching Rockets Into Radio-Disrupting Clouds


      Article


      4 weeks ago
      View the full article
    • By NASA
      As humanity prepares to return to the lunar surface, Aaisha Ali is behind the scenes ensuring mission readiness for astronauts set to orbit the Moon during Artemis II. 
      Ali is the Artemis ground control flight lead at NASA’s Johnson Space Center in Houston. She makes sure her team has the resources needed for the next giant leap to the Moon and beyond. 
      Aaisha Ali on console in the International Space Station Flight Control Room at NASA’s Johnson Space Center in Houston. NASA/Robert Markowitz My passion has always been science. I started by exploring the ocean, and now I get to help explore the stars.
      Aaisha Ali
      Artemis Ground Control Flight Lead
      Ali received a bachelor’s degree in biology from Texas A&M University at Galveston before beginning a career as a marine biologist. Her curiosity about science and communication eventually led her from studying marine life to sharing NASA’s mission with the public. With a robust skill set that includes public relations, media relations, and strategic communications, she went on to work at Space Center Houston and later at Johnson on the protocol and digital imagery teams.
      Today, Ali leads the ground control team supporting Artemis II, ensuring that systems, simulations, and procedures are ready for the mission. Her role includes developing flight rules, finalizing operations plans and leading training sessions – known as “network sims” – that prepare her team to respond quickly and effectively. 
      “Because I’ve had a multifaceted career path, it has given me a different outlook,” she said. “Diversity of mindsets helps us approach problems. Sometimes a different angle is exactly what we need.” 
      Aaisha Ali, right, with her two siblings. Her perspective was also shaped by visits to her grandmother in the Caribbean as a child. “She lived in the tropical forest in a small village in Trinidad,” Ali said. “I was fortunate enough to spend summers on the island and experience a different way of life, which has helped me grow into the person I am today.”  
      Communication, she explained, is just as critical as technical expertise. “When we report to the flight director, we are the experts in our system. But we have to be clear and concise. You don’t get a lot of time on the flight loop to explain.” 
      That clarity, humility, and sense of teamwork are values Ali says have shaped her journey. 
      Aaisha Ali participates in a public affairs event at Ellington Field Joint Reserve Base in Houston in 2005. We don’t do it by ourselves. Everyone — from our engineers to custodial staff to cafeteria workers — plays a role in getting us to the Moon. NASA is for the world. And it takes all of us.
      Aaisha ali
      Artemis Ground Control Flight Lead
      Looking ahead, Ali is especially passionate about inspiring the Artemis Generation — those who will one day explore the Moon and Mars. She often shares advice with her nieces and nephews, including one determined nephew who has dreamed of becoming an astronaut since age 7. 
      “Do what you love, and NASA will find a place for you,” she said. “NASA is a big place. If you love the law, we have lawyers. If you love art, science, or technology, there’s a place for you. Passion is what we’re looking for.” 
      Aaisha Ali at Walt Disney World in Orlando, Florida. In her free time, Ali enjoys photography and connecting with nature by camping and visiting national parks. She also loves planning trips to Walt Disney World, meeting new people, experiencing different cultures, and learning new things. 
      Even as her days are packed with simulations and mission prep, Ali knows landing astronauts on the lunar surface for Artemis III is not far behind. 
      “There’s a lot of uphill left to climb,” she said. “But we’re ready.” 
      View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Hubble and Artificial Intelligence Explore the Night Sky Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 2 min read
      Hubble Observations Give “Missing” Globular Cluster Time to Shine
      This NASA Hubble Space Telescope image features a dense and dazzling array of blazing stars that form globular cluster ESO 591-12. NASA, ESA, and D. Massari (INAF — Osservatorio di Astrofisica e Scienza dello Spazio); Processing: Gladys Kober (NASA/Catholic University of America)
      Download this image

      A previously unexplored globular cluster glitters with multicolored stars in this NASA Hubble Space Telescope image. Globular clusters like this one, called ESO 591-12 or Palomar 8, are spherical collections of tens of thousands to millions of stars tightly bound together by gravity. Globular clusters generally form early in the galaxies’ histories in regions rich in gas and dust. Since the stars form from the same cloud of gas as it collapses, they typically hover around the same age. Strewn across this image of ESO 591-12 are a number of red and blue stars. The colors indicate their temperatures; red stars are cooler, while the blue stars are hotter.
      Hubble captured the data used to create this image of ESO 591-12 as part of a study intended to resolve individual stars of the entire globular cluster system of the Milky Way. Hubble revolutionized the study of globular clusters since earthbound telescopes are unable to distinguish individual stars in the compact clusters. The study is part of the Hubble Missing Globular Clusters Survey, which targets 34 confirmed Milky Way globular clusters that Hubble has yet to observe.
      The program aims to provide complete observations of ages and distances for all of the Milky Way’s globular clusters and investigate fundamental properties of still-unexplored clusters in the galactic bulge or halo. The observations will provide key information on the early stages of our galaxy, when globular clusters formed.
      Explore More

      Hubble’s Star Clusters


      Exploring the Birth of Stars

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Jul 03, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Galaxies, Stars, & Black Holes Globular Clusters Goddard Space Flight Center Star Clusters Stars Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Cosmic Adventure



      Hubble’s Night Sky Challenge



      Hubble’s 35th Anniversary


      View the full article
  • Check out these Videos

×
×
  • Create New...