Members Can Post Anonymously On This Site
NextSTEP Q: CIS Capability Studies III – Lunar User Terminals & Network Orchestration and Management System
-
Similar Topics
-
By NASA
The powerhouse of Gateway, NASA’s orbiting outpost around the Moon and a critical piece of infrastructure for Artemis, is in the midst of several electric propulsion system tests.
The Power and Propulsion Element (PPE), being manufactured by Maxar Technologies, provides Gateway with power, high-rate communications, and propulsion for maneuvers around the Moon and to transit between different orbits. The PPE will be combined with the Habitation and Logistic Outpost (HALO) before the integrated spacecraft’s launch, targeted for late 2024 aboard a SpaceX Falcon Heavy. Together, these elements will serve as the hub for early Gateway crewed operations and various science and technology demonstrations as the full Gateway station is assembled around it in the coming years.
In this image, PPE engineers successfully tested the integration of Aerojet Rocketdyne’s thruster with Maxar’s power procession unit and Xenon Flow Controller.
Image Credit: NASA
View the full article
-
By NASA
An artist’s concept of Intuitive Machines’ Nova-C lunar lander on the Moon’s South Pole.Credit: Intuitive Machines A new set of NASA science experiments and technology demonstrations will arrive at the lunar South Pole in 2027 following the agency’s latest CLPS (Commercial Lunar Payload Services) initiative delivery award. Intuitive Machines of Houston will receive $116.9 million to deliver six NASA payloads to a part of the Moon where nighttime temperatures are frigid, the terrain is rugged, and the permanently shadowed regions could help reveal the origin of water throughout our solar system.
Part of the agency’s broader Artemis campaign, CLPS aims to conduct science on the Moon for the benefit of all, including experiments and demos that support missions with crew on the lunar surface.
“This marks the 10th CLPS delivery NASA has awarded, and the fourth planned for delivery to the South Pole of the Moon,” said Joel Kearns, deputy associate administrator for exploration, Science Mission Directorate, NASA Headquarters in Washington. “By supporting a robust cadence of CLPS flights to a variety of locations on the lunar surface, including two flights currently planned by companies for later this year, NASA will explore more of the Moon than ever before.”
NASA has awarded Intuitive Machine’s four task orders. The company delivered six NASA payloads to Malapert A in the South Pole region of the Moon in early 2024. With this lunar South Pole delivery, Intuitive Machines will be responsible for payload integration, launch from Earth, safe landing on the Moon, and mission operations.
“The instruments on this newly awarded flight will help us achieve multiple scientific objectives and strengthen our understanding of the Moon’s environment,” said Chris Culbert, manager of the CLPS initiative at NASA’s Johnson Space Center in Houston. “For example, they’ll help answer key questions about where volatiles – such as water, ice, or gas – are found on the lunar surface and measure radiation in the South Pole region, which could advance our exploration efforts on the Moon and help us with continued exploration of Mars.”
The instruments, collectively expected to be about 174 pounds (79 kilograms) in mass, include:
The Lunar Explorer Instrument for Space Biology Applications will deliver yeast to the lunar surface and study its response to radiation and lunar gravity. The payload is managed by NASA’s Ames Research Center in Silicon Valley, California. Package for Resource Observation and In-Situ Prospecting for Exploration, Characterization and Testing is a suite of instruments that will drill down to 3.3 feet (1 meter) beneath the lunar surface, extract samples, and process them in-situ in a miniaturized laboratory, to identify possible volatiles (water, ice, or gas) trapped at extremely cold temperatures under the surface. This suite is led by ESA (European Space Agency). The Laser Retroreflector Array is a collection of eight retroreflectors that will enable lasers to precisely measure the distance between a spacecraft and the reflector on the lander. The array is a passive optical instrument and will function as a permanent location marker on the Moon for decades to come. The retroflector array is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. The Surface Exosphere Alterations by Landers will investigate the chemical response of lunar regolith to the thermal, physical, and chemical disturbances generated during a landing, and evaluate contaminants injected into the regolith by the lander. It will give insight into how a spacecraft landing might affect the composition of samples collected nearby. This payload is managed by NASA Goddard. The Fluxgate Magnetometer will characterize certain magnetic fields to improve the understanding of energy and particle pathways at the lunar surface and is managed by NASA Goddard. The Lunar Compact Infrared Imaging System will deploy a radiometer – a device that measures infrared wavelengths of light – to explore the Moon’s surface composition, map its surface temperature distribution, and demonstrate the instrument’s feasibility for future lunar resource utilization activities. The imaging system is managed by the Laboratory for Atmospheric and Space Physics at the University of Colorado at Boulder. Under CLPS, multiple commercial deliveries to different geographic regions will help NASA conduct science and continue working toward a long-term human presence on the Moon. Future deliveries will include sophisticated science experiments, and technology demonstrations as part of the agency’s Artemis campaign. Two upcoming CLPS flights slated to launch near the end of 2024 will deliver NASA payloads to the Moon’s nearside and South Pole, including the Intuitive Machines-2 delivery of NASA’s first on-site demonstration of searching for water and other chemical compounds 3.3 feet below the surface of the Moon, using a drill and mass spectrometer.
Learn more about CLPS and Artemis at:
https://www.nasa.gov/clps
-end-
Karen Fox
Headquarters, Washington
202-358-1275
karen.c.fox@nasa.gov
Laura Sorto / Natalia Riusech
Johnson Space Center, Houston
281-483-5111
laura.g.sorto@nasa.gov / natalia.s.riusech@nasa.gov
Share
Details
Last Updated Aug 29, 2024 LocationNASA Headquarters Related Terms
Commercial Lunar Payload Services (CLPS) Commercial Space Commercial Space Programs Earth's Moon Johnson Space Center NASA Headquarters View the full article
-
By European Space Agency
Video: 00:01:23 On 19–20 August 2024, Juice successfully completed a world-first lunar-Earth flyby, with flight controllers guiding the spacecraft first past the Moon, then past Earth. The gravity of the two changed Juice’s speed and direction, sending it on a shortcut to Jupiter via Venus.
The closest approach to the Moon was at 23:15 CEST on 19 August, deflecting Juice towards a closest approach to Earth just over 24 hours later at 23:56 CEST on 20 August. In the hours before and after both close approaches, Juice’s two monitoring cameras captured photos, giving us a unique ‘Juice eye view’ of our home planet.
Juice’s two monitoring cameras provide black-and-white snapshots in 1024 x 1024 pixel resolution (they can be processed in colour). Their main purpose is to monitor the spacecraft’s various booms and antennas, especially during the challenging period after launch. The photos they captured of the Moon and Earth during the lunar-Earth flyby are a bonus.
The piece of music that accompanies the images is called 11,2 km/s. It was composed by Gautier Archer back in 2015, and selected as the official theme music for ESA’s Estrack ground station network to mark its 40th anniversary (more information). The music is available under a CC BY-NC-SA licence.
Juice rerouted to Venus in world’s first lunar-Earth flyby
Juice’s lunar-Earth flyby: all you need to know
Processing notes: The Juice monitoring cameras provide 1024 x 1024 pixel images. Upscaling software was used to convert the images into 2160 x 2160 pixel images, which match the 3480 x 2160 pixel resolution of the 4K movie format.
Access the related broadcast quality footage.
View the full article
-
By NASA
The crew of the Human Exploration Research Analog’s Campaign 7 Mission 1 clasp hands above their simulated space habitat’s elevator shaft.Credit: NASA NASA is funding 11 new studies to better understand how to best support the health and performance of crew members during long-duration spaceflight missions. The awardees will complete the studies on Earth without the need for samples and data from astronauts.
Together, the studies will help measure physiological and psychological responses to physical and mental challenges that astronauts may encounter during spaceflight. The projects will address numerous spaceflight risks related to team performance, communication, living environment, decision-making, blood flow, and brain health. With this information, NASA will better mitigate risks and protect astronaut health and performance during future long-duration missions to the Moon, Mars, and beyond.
The 11 finalists were selected from 123 proposals in response to the 2024 Human Exploration Research Opportunities available through the NASA Solicitation and Proposal Integrated Review and Evaluation System. Selected proposals originate from 10 institutions, and the cumulative award totals about $14.6 million. The durations of the projects range from one to five years.
The following investigators and teams were selected:
Katya Arquilla, University Of Colorado, Boulder, “Investigating Countermeasures for Communication Delays through the Laboratory-based Exploration Mission Analog” Tripp Driskell, Florida Maxima Corporation, “CADMUS (Crew Adaptive Decision Making Under Stress) and Crew Decision Support System: Development, Validation, and Proof-of-Concept” Christopher Jones, University of Pennsylvania, Philadelphia, “Predicting Operationally Meaningful Performance with Multivariate Biomarkers Using Advanced Algorithms” Jessica Marquez, NASA Ames Research Center, Silicon Valley, California, “Enhancing Performance and Communication for Distributed Teams During Lunar Spacewalks” Shu-Chieh Wu, San Jose State University Research Foundation, California, “Lessening the Impact of Interface Inconsistency Through Goal-Directed Crew Operations” Erika Rashka, Johns Hopkins University, Baltimore, “Local Psychiatric Digital Phenotyping for Isolated, Constrained, and Extreme (ICE) Environments via Multimodal Sensing” Ana Diaz Artiles, Texas A&M Engineering Experiment Station, College Station, “Dose-response Curves of Cardiovascular and Ocular Variables During Graded Lower Body Negative Pressure in Microgravity Conditions Using Parabolic Flight” Theodora Chaspari, University Of Colorado, Boulder, “A Speech-Based Artificial Intelligence System for Predicting Team Functioning Degradation in HERA (Human Exploration Research Analog) Missions” Ute Fischer, Georgia Tech Research Corporation, Atlanta, “Supporting Collaboration and Connectedness between Space and Ground at Lunar Latencies” Xiaohong Lu, Louisiana State University, Shreveport, “Space Exposome Converges on Genotoxic Stress to Accelerate Brain Aging and Countermeasures to Mitigate Acute and Late Central Nervous System Risks” Catherine Davis, Henry M. Jackson Foundation For The Advancement of Military Medicine, North Bethesda, Maryland, “NeuroSTAR (Neurobehavioral Changes Following Stressors and Radiation): Predicting Mission Impacts from Analogous Human and Rodent Endpoints” Proposals were independently reviewed by subject matter experts in academia, industry, and government using a dual anonymous peer-review process to assess scientific merit. NASA assessed the top scoring proposals for relevance to the agency’s human research roadmap before final selections were made.
____
NASA’s Human Research Program pursues the best methods and technologies to support safe, productive human space travel. Through science conducted in laboratories, ground-based analogs, and the International Space Station, the program scrutinizes how spaceflight affects human bodies and behaviors. Such research continues to drive NASA’s mission to innovate ways that keep astronauts healthy as space exploration expands to the Moon, Mars, and beyond.
Explore More
5 min read NASA Shares Asteroid Bennu Sample in Exchange with JAXA
Article 2 hours ago 10 min read Preguntas frecuentes: Estado del retorno de la prueba de vuelo tripulado Boeing de la NASA
Article 3 hours ago 2 min read 2025 Human Lander Challenge
Article 2 days ago Keep Exploring Discover More Topics From NASA
Living in Space
Artemis
Human Research Program
Space Station Research and Technology
View the full article
-
By European Space Agency
The European Service Module that will power the Orion spacecraft during the Artemis III mission to the Moon is soon on its way to the United States.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.