Members Can Post Anonymously On This Site
NASA’s ECOSTRESS Maps Burn Risk Across Phoenix Streets
-
Similar Topics
-
By USH
These images captured by the Curiosity rover in 2014 reveals yet another unexplained aerial phenomenon in the Martian atmosphere, a cigar-shaped object with a consistent width and rounded ends.
What makes this anomaly particularly compelling is the sharp clarity of the image. According to Jean Ward the stars in the background appear crisp and unblurred, indicating that the object is not the result of motion blur or a long exposure. Notably, the object appears in five separate frames over an 8-minute span, suggesting it is moving relatively slowly through space, uncharacteristic of a meteorite entering the atmosphere. It also lacks the fiery tail typically associated with atmospheric entry.
Rather than a meteor, the object more closely resembles a solid, elongated craft of unknown origin. When oriented horizontally, it even appears to feature a front-facing structure, possibly a porthole or raised dome, hinting at a cockpit or command module.
Whether this object is orbiting beyond the visible horizon or connected to the surface far in the distance, its sheer size is unmistakable. Its presence raises compelling questions, could this be further evidence of intelligently controlled craft, whether of extraterrestrial or covert human origin, navigating through Martian airspace?View the full article
-
By NASA
A new online portal by NASA and the Alaska Satellite Facility maps satellite radar meas-urements across North America, enabling users to track land movement since 2016 caused by earthquakes, landslides, volcanoes, and other phenomena.USGS An online tool maps measurements and enables non-experts to understand earthquakes, subsidence, landslides, and other types of land motion.
NASA is collaborating with the Alaska Satellite Facility in Fairbanks to create a powerful web-based tool that will show the movement of land across North America down to less than an inch. The online portal and its underlying dataset unlock a trove of satellite radar measurements that can help anyone identify where and by how much the land beneath their feet may be moving — whether from earthquakes, volcanoes, landslides, or the extraction of underground natural resources such as groundwater.
Spearheaded by NASA’s Observational Products for End-Users from Remote Sensing Analysis (OPERA) project at the agency’s Jet Propulsion Laboratory in Southern California, the effort equips users with information that would otherwise take years of training to produce. The project builds on measurements from spaceborne synthetic aperture radars, or SARs, to generate high-resolution data on how Earth’s surface is moving.
The OPERA portal shows how land is sinking in Freshkills Park, which is being built on the site of a former landfill on Staten Island, New York. Landfills tend to sink over time as waste decomposes and settles. The blue dot marks the spot where the portal is showing movement in the graph.Alaska Satellite Facility Formally called the North America Surface Displacement Product Suite, the new dataset comes ready to use with measurements dating to 2016, and the portal allows users to view those measurements at a local, state, and regional scales in a few seconds. For someone not using the dataset or website, it could take days or longer to do a similar analysis.
“You can zoom in to your country, your state, your city block, and look at how the land there is moving over time,” said David Bekaert, the OPERA project manager and a JPL radar scientist. “You can see that by a simple mouse click.”
The portal currently includes measurements for millions of pixels across the U.S. Southwest, northern Mexico, and the New York metropolitan region, each representing a 200-foot-by-200-foot (60-meter-by-60-meter) area on the ground. By the end of 2025, OPERA will add data to cover the rest of the United States, Central America, and Canada within 120 miles (200 kilometers) of the U.S. border. When a user clicks on a pixel, the system pulls measurements from hundreds of files to create a graph visualizing the land surface’s cumulative movement over time.
Land is rising at the Colorado River’s outlet to the Gulf of California, as indicated in this screenshot from the OPERA portal. The uplift is due to the sediment from the river building up over time. The graph shows that the land at the blue dot has risen about 8 inches (20 centimeters) since 2016.Alaska Satellite Facility “The OPERA project automated the end-to-end SAR data processing system such that users and decision-makers can focus on discovering where the land surface may be moving in their areas of interest,” said Gerald Bawden, program scientist responsible for OPERA at NASA Headquarters in Washington. “This will provide a significant advancement in identifying and understanding potential threats to the end users, while providing cost and time savings for agencies.”
For example, water-management bureaus and state geological surveys will be able to directly use the OPERA products without needing to make big investments in data storage, software engineering expertise, and computing muscle.
How It Works
To create the displacement product, the OPERA team continuously draws data from the ESA (European Space Agency) Sentinel-1 radar satellites, the first of which launched in 2014. Data from NISAR, the NASA-ISRO (Indian Space Research Organisation) Synthetic Aperture Radar mission, will be added to the mix after that spacecraft launches later this year.
The OPERA portal shows that land near Willcox, Arizona, subsided about 8 inches (20 centimeters) since between 2016 and 2021, in large part due to groundwater pumping. The region is part of an area being managed by state water officials.Alaska Satellite Facility Satellite-borne radars work by emitting microwave pulses at Earth’s surface. The signals scatter when they hit land and water surfaces, buildings, and other objects. Raw data consists of the strength and time delay of the signals that echo back to the sensor.
To understand how land in a given area is moving, OPERA algorithms automate steps in an otherwise painstaking process. Without OPERA, a researcher would first download hundreds or thousands of data files, each representing a pass of the radar over the point of interest, then make sure the data aligned geographically over time and had precise coordinates.
Then they would use a computationally intensive technique called radar interferometry to gauge how much the land moved, if at all, and in which direction — towards the satellite, which would indicate the land rose, or away from the satellite, which would mean it sank.
“The OPERA project has helped bring that capability to the masses, making it more accessible to state and federal agencies, and also users wondering, ‘What’s going on around my house?’” said Franz Meyer, chief scientist of the Alaska Satellite Facility, a part of the University of Alaska Fairbanks Geophysical Institute.
Monitoring Groundwater
Sinking land is a top priority to the Arizona Department of Water Resources. From the 1950s through the 1980s, it was the main form of ground movement officials saw, as groundwater pumping increased alongside growth in the state’s population and agricultural industry. In 1980, the state enacted the Groundwater Management Act, which reduced its reliance on groundwater in highly populated areas and included requirements to monitor its use.
The department began to measure this sinking, called subsidence, with radar data from various satellites in the early 2000s, using a combination of SAR, GPS-based monitoring, and traditional surveying to inform groundwater-management decisions.
Now, the OPERA dataset and portal will help the agency share subsidence information with officials and community members, said Brian Conway, the department’s principal hydrogeologist and supervisor of its geophysics unit. They won’t replace the SAR analysis he performs, but they will offer points of comparison for his calculations. Because the dataset and portal will cover the entire state, they also could identify areas not yet known to be subsiding.
“It’s a great tool to say, ‘Let’s look at those areas more intensely with our own SAR processing,’” Conway said.
The displacement product is part of a series of data products OPERA has released since 2023. The project began in 2020 with a multidisciplinary team of scientists at JPL working to address satellite data needs across different federal agencies. Through the Satellite Needs Working Group, those agencies submitted their requests, and the OPERA team worked to improve access to information to aid a range of efforts such as disaster response, deforestation tracking, and wildfire monitoring.
NASA-Led Project Tracking Changes to Water, Ecosystems, Land Surface News Media Contacts
Andrew Wang / Jane J. Lee
Jet Propulsion Laboratory, Pasadena, Calif.
626-379-6874 / 818-354-0307
andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov
2025-076
Share
Details
Last Updated Jun 06, 2025 Related Terms
Earth Science Earth Science Division Earthquakes Jet Propulsion Laboratory Natural Disasters Volcanoes Explore More
4 min read NASA Mars Orbiter Captures Volcano Peeking Above Morning Cloud Tops
Article 9 mins ago 8 min read ICESat-2 Applications Team Hosts Satellite Bathymetry Workshop
Introduction On September 15, 2018, the NASA Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) mission…
Article 1 day ago 5 min read Jack Kaye Retires After a Storied Career at NASA
Jack Kaye [NASA HQ—Associate Director for Research, Earth Science Division (ESD)] has decided to retire…
Article 1 day ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Will the Sun ever burn out?
Well, the Sun, just like the stars we see at night, is a star. It’s a giant ball of super hot hydrogen.
Gravity squeezes it in and it creates energy, which is what makes the Sun shine. Eventually, it will use up all of that hydrogen. But in the process, it’s creating helium. So it will then use the helium. And it will continue to use larger and larger elements until it can’t do this anymore.
And when that happens, it will start to expand into a red giant about the size of the inner planets. Then it will shrink back down into a very strange star called a white dwarf — super hot, but not very bright and about the size of the Earth.
But our Sun has a pretty long lifetime. It’s halfway through its 10-billion-year lifetime.
So the Sun will never really burn out, but it will change and be a very, very different dim kind of star when it reaches the end of its normal life.
[END VIDEO TRANSCRIPT]
Full Episode List
Full YouTube Playlist
Share
Details
Last Updated May 15, 2025 Related Terms
Science Mission Directorate Heliophysics Heliophysics Division The Solar System The Sun The Sun & Solar Physics Explore More
4 min read Eclipses, Auroras, and the Spark of Becoming: NASA Inspires Future Scientists
In the heart of Alaska’s winter, where the night sky stretches endlessly and the aurora…
Article 16 hours ago 6 min read NASA Observes First Visible-light Auroras at Mars
On March 15, 2024, near the peak of the current solar cycle, the Sun produced…
Article 19 hours ago 6 min read NASA’s Magellan Mission Reveals Possible Tectonic Activity on Venus
Article 19 hours ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.