Jump to content

NASA Shares Use Requirements with Commercial Destination Partners


NASA

Recommended Posts

  • Publishers
A male astronaut is looking into a glass glovebox as he works on a science experiment. Inside the glovebox there is various scientific equipment including several syringes and bags. The astronaut is holding two syringes inside the glovebox.
NASA astronaut Mike Barratt processes brain organoid samples inside the life science glovebox for a neurodegenerative disorder study. NASA plans to use future commercial low Earth orbit destinations for the continuation of scientific research.
NASA

NASA hosted a meeting to share knowledge with companies developing future commercial destinations at the agency’s Johnson Space Center in Houston. The discussion could aid in developing safe, reliable, innovative, and cost-effective space stations. Industry representatives from more than 20 companies attended.

The program focused on NASA’s planned use of commercial destinations, draft utilization requirements, and the payload life cycle. A primary interest for the use of commercial stations includes the continuation of scientific research in low Earth orbit, such as human research, technology demonstrations, biological and physical science, and Earth observation.

A man wearing a gray blazer stands at a podium with the NASA meatball logo attached to the front. The man is gesturing with his hands as he speaks to an audience.
David Caponio from Vast Space presents a five-minute lightning talk on the company’s capabilities during the program NASA’s Johnson Space Center. Vast is working with NASA under the second Collaborations for Commercial Space Capabilities initiative for technologies and operations required for its microgravity and artificial gravity stations, including the Haven-1 commercial destination.
NASA/Josh Valcarcel

“NASA has benefited from the unique microgravity environment of low Earth orbit to conduct important science investigations and technology demonstrations for more than two decades,” said Dr. Kirt Costello, utilization manager for NASA’s Commercial Low Earth Orbit Development Program. “As commercial companies make progress in the design and development of their own space stations, it is important that we share NASA’s needs and requirements as well as foster an open dialogue between government and private industry.”

The program builds on a request for information released last year, seeking feedback from industry as the agency refines its requirements for new commercial space destinations.

A group of four people are speaking to each other. There are three men and a woman. The man in the center is wearing a blue button-down shirt with a gray blazer and glasses and smiling at the other people.
Vergel Romero of Sierra Space speaks with representatives from other commercial companies during a networking opportunity. Sierra Space is working with Blue Origin on the development of Orbital Reef, and also holds an unfunded Space Act Agreement with NASA for the development of its commercial low Earth orbit ecosystem.
NASA/Josh Valcarcel

Since then, the feedback has helped develop and refine a utilization requirements strategy, including a concept of operations, basic laboratory capabilities, and common payload standards for heritage hardware. NASA will continue to refine its future requirements and incorporate future low Earth orbit needs of other U.S. government agencies and international partners.

NASA uses a two-phase strategy to support the development of commercial destinations and enable the agency to purchase services as one of many customers. Phase 1 efforts extend through 2025, before NASA plans to transition to Phase 2, which will be to certify commercial destinations and purchase services.   

A woman wearing a pink blouse and a black blazer stands at a podium with the NASA meatball logo attached to the front. The woman is speaking to a group of people.
Eleasa Kim, payload operations lead for NASA’s Commercial Low Earth Orbit Development Program, presents on NASA’s planned utilization activities for commercial destinations and expectations for provider support.
NASA/Josh Valcarcel

The agency’s commercial strategy for low Earth orbit will provide the government with reliable and safe services at a lower cost and enable the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.

Learn more about NASA’s commercial space strategy at:

https://www.nasa.gov/humans-in-space/commercial-space/

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA and Boeing welcomed Starliner back to Earth following the uncrewed spacecraft’s successful landing at 10:01 p.m. MDT Sept. 6, 2024, at the White Sands Space Harbor in New Mexico. Credit: NASA NASA and Boeing safely returned the uncrewed Starliner spacecraft following its landing at 10:01 p.m. MDT Sept. 6 at White Sands Space Harbor in New Mexico, concluding a three-month flight test to the International Space Station.
      “I am extremely proud of the work our collective team put into this entire flight test, and we are pleased to see Starliner’s safe return,” said Ken Bowersox, associate administrator, Space Operations Mission Directorate at NASA Headquarters in Washington. “Even though it was necessary to return the spacecraft uncrewed, NASA and Boeing learned an incredible amount about Starliner in the most extreme environment possible. NASA looks forward to our continued work with the Boeing team to proceed toward certification of Starliner for crew rotation missions to the space station.”
      The flight on June 5 was the first time astronauts launched aboard the Starliner. It was the third orbital flight of the spacecraft, and its second return from the orbiting laboratory. Starliner now will ship to NASA’s Kennedy Space Center in Florida for inspection and processing.
      NASA’s Commercial Crew Program requires a spacecraft to fly a crewed test flight to prove the system is ready for regular flights to and from the orbiting laboratory. Following Starliner’s return, the agency will review all mission-related data.
      “We are excited to have Starliner home safely. This was an important test flight for NASA in setting us up for future missions on the Starliner system,” said Steve Stich, manager of NASA’s Commercial Crew Program. “There was a lot of valuable learning that will enable our long-term success. I want to commend the entire team for their hard work and dedication over the past three months.”
      NASA astronauts Butch Wilmore and Suni Williams launched on June 5 aboard Starliner for the agency’s Boeing Crewed Flight Test from Cape Canaveral Space Force Station in Florida. On June 6, as Starliner approached the space station, NASA and Boeing identified helium leaks and experienced issues with the spacecraft’s reaction control thrusters. Following weeks of in-space and ground testing, technical interchange meetings, and agency reviews, NASA made the decision to prioritize safety and return Starliner without its crew. Wilmore and Williams will continue their work aboard station as part of the Expedition 71/72 crew, returning in February 2025 with the agency’s SpaceX Crew-9 mission.
      The crew flight test is part of NASA’s Commercial Crew Program. The goal of NASA’s Commercial Crew Program is safe, reliable, and cost-effective transportation to and from the International Space Station and low Earth orbit. This already is providing additional research time and has increased the opportunity for discovery aboard humanity’s microgravity testbed, including helping NASA prepare for human exploration of the Moon and Mars.
      Learn more about NASA’s Commercial Crew program at:
      https://www.nasa.gov/commercialcrew
      -end-
      Joshua Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Leah Cheshier
      Johnson Space Center, Houston
      281-483-5111
      leah.d.cheshier@nasa.gov
      Steve Siceloff / Danielle Sempsrott / Stephanie Plucinsky
      Kennedy Space Center, Florida
      321-867-2468
      steven.p.siceloff@nasa.gov / danielle.c.sempsrott@nasa.gov / stephanie.n.plucinsky@nasa.gov
      Share
      Details
      Last Updated Sep 07, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Commercial Crew International Space Station (ISS) ISS Research View the full article
    • By NASA
      Credit: NASA NASA has selected eight companies for a new award to help acquire Earth observation data and provide related services for the agency.
      The Commercial SmallSat Data Acquisition Program On-Ramp1 Multiple Award contract is a firm-fixed-price indefinite-delivery/indefinite-quantity multiple-award contract with a maximum value of $476 million, cumulatively amongst all the selected contractors, and a performance period through Nov. 15, 2028.
      The selectees are:
      BlackSky Geospatial Solutions, Inc. in Herndon, Virginia ICEYE US Inc. in Irvine, California MDA Geospatial Service Inc. in Richmond, British Columbia, Canada Pixxel Space Technologies, Inc in El Segundo, California Planet Labs Federal, Inc. in Arlington, Virginia Satellogic Federal, LLC in Davidson, North Carolina Teledyne Brown Engineering, Inc. in Huntsville, Alabama The Tomorrow Companies Inc. in Boston Under the contract, the recipients will be responsible for acquiring observation data from commercial sources that support NASA’s Earth science research and application activities that help improve life on the planet. The goal of the awards is to give NASA a cost-effective way to augment or complement the Earth observations acquired by the agency and other U.S. government and international agencies for the benefit of all.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Share
      Details
      Last Updated Sep 06, 2024 LocationNASA Headquarters Related Terms
      SmallSats Program Earth Earth Observatory NASA Headquarters Planetary Science Division Science Mission Directorate View the full article
    • By NASA
      The Roscosmos Soyuz MS-26 spacecraft will launch from the Baikonur Cosmodrome in Kazakhstan to the International Space Station with (pictured left to right) NASA astronaut Don Pettit and Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner.Credit: Gagarin Cosmonaut Training Center NASA astronaut Don Pettit will launch aboard the Roscosmos Soyuz MS-26 spacecraft, accompanied by cosmonauts Alexey Ovchinin and Ivan Vagner, to the International Space Station where they will join the Expedition 71 crew in advancing scientific research.
      Pettit, Ovchinin, and Vagner will lift off at 12:23 p.m. EDT Wednesday, Sept. 11 (9:23 p.m. Baikonur time) from the Baikonur Cosmodrome in Kazakhstan.
      Coverage will stream on NASA+, the NASA app, and the agency’s website. Learn how to stream NASA content through a variety of platforms including social media.
      After a two-orbit, three-hour trajectory to the station, the spacecraft will automatically dock at 3:33 p.m. at the orbiting laboratory’s Rassvet module. Shortly after, hatches will open between the spacecraft and the station.
      Once aboard, the trio will join NASA astronauts Tracy C. Dyson, Mike Barratt, Matthew Dominick, Jeanette Epps, Butch Wilmore, and Suni Williams, as well as Roscosmos cosmonauts Nikolai Chub, Alexander Grebenkin, and Oleg Kononenko.
      NASA’s coverage is as follows (all times Eastern and subject to change based on real-time operations):
      11:15 a.m. – Launch coverage begins on NASA+, the NASA app, YouTube, and the agency’s website.
      12:23 p.m. – Launch
      2:30 p.m. – Rendezvous and docking coverage begins on NASA+, the NASA app, YouTube, and the agency’s website.
      3:33 p.m. – Docking
      5:30 p.m. – Hatch opening and welcome remarks coverage begins on NASA+, the NASA app, YouTube, and the agency’s website.
      5:50 p.m. – Hatch opening
      The trio will spend approximately six months aboard the orbital laboratory as Expedition 71 and 72 crew members before returning to Earth in the spring of 2025. This will be the fourth spaceflight for Pettit and Ovchinin, and the second for Vagner.
      For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge, and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA is focusing more resources on deep space missions to the Moon as part of Artemis in preparation for future human missions to Mars.
      Learn more about International Space Station research and operations at:
      https://www.nasa.gov/station
      -end-
      Joshua Finch / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Sep 06, 2024 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Astronauts Donald R. Pettit Humans in Space ISS Research Johnson Space Center View the full article
    • By NASA
      Learn Home NASA Summer Camp Inspires… Earth Science Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Stories Science Activation Highlights Citizen Science   2 min read
      NASA Summer Camp Inspires Future Climate Leaders
      From July 15-19, 2024, the Coastal Equity and Resilience Hub at the Georgia Institute of Technology collaborated with the University of Georgia (UGA) Marine Extension and Georgia Sea Grant to host a week-long NASA Sea Level Changemakers Summer Camp. The camp introduced 14 rising 7th-8th graders to how coastal areas are changing due to sea level rise. Set at the UGA Marine Education Center and Aquarium on Skidaway Island, the camp offered students hands-on activities and outdoor educational experiences, where they analyzed real data collected by NASA scientists and learned about community adaptations to flooding. Students interacted with experts from NASA’s Jet Propulsion Laboratory, UGA, and Georgia Tech, gaining insights into satellite observations, green infrastructure, environmental sensors, and careers related to sea level rise. The camp also included a visit to the Pin Point Heritage Museum, where students engaged with leaders from the historic Gullah Geechee community of Pin Point. The camp concluded with a boat trip to Wassaw Island, where students observed the effects of sea level rise on an undeveloped barrier island and compared these observations with earlier findings from urban environments. Funding from the NASA’s Science Activation Program and its Sea Level Education, Awareness, and Literacy (SEAL) team ensured that the camp was accessible to all students, eliminating financial barriers for groups traditionally underrepresented in STEM education.
      “This investment from NASA has provided an amazing opportunity for youth in coastal Georgia to utilize NASA data and resources on a critical issue affecting their communities,” said Jill Gambill, executive director of the Coastal Equity and Resilience (CEAR) Hub at Georgia Tech. “They have more confidence now in their knowledge of sea level rise and potential solutions.”
      The Sea Level Education, Awareness, and Literacy (SEAL) team is supported by NASA under cooperative agreement award number NNH21ZDA001N-SCIACT and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      Participants of the 2024 NASA Sea Level Changemakers Summer Camp in Savannah, GA Share








      Details
      Last Updated Sep 06, 2024 Editor NASA Science Editorial Team Location Jet Propulsion Laboratory Related Terms
      Earth Science NOAA (National Oceanic and Atmospheric Administration) Opportunities For Students to Get Involved Science Activation Sea Level Rise Explore More
      2 min read Leveraging Teacher Leaders to Share the Joy of NASA Heliophysics


      Article


      2 days ago
      2 min read NASA Earth Science Education Collaborative Member Co-Authors Award-Winning Paper in Insects


      Article


      3 days ago
      2 min read Co-creating authentic STEM learning experiences with Latino communities


      Article


      7 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      On the left, the Canopee transport carrier containing the European Service Module for NASA’s Artemis III mission arrives at Port Canaveral in Florida, on Tuesday, Sept. 3, 2024, before completing the last leg of its journey to the agency’s Kennedy Space Center’s Neil A. Armstrong Operations and Checkout via truck. On the right, NASA’s Pegasus barge, carrying several pieces of hardware for Artemis II, III, and IV arrives at NASA Kennedy’s Launch Complex 39 turn basin wharf on Thursday, Sept. 5, 2024. Credit: NASA From across the Atlantic Ocean and through the Gulf of Mexico, two ships converged, delivering key spacecraft and rocket components of NASA’s Artemis campaign to the agency’s Kennedy Space Center in Florida.
      On Sept. 3, ESA (European Space Agency) marked a milestone in the Artemis III mission as its European-built service module for NASA’s Orion spacecraft completed a transatlantic journey from Bremen, Germany, to Port Canaveral, Florida, where technicians moved it to nearby NASA Kennedy. Transported aboard the Canopée cargo ship, the European Service Module—assembled by Airbus with components from 10 European countries and the U.S.—provides propulsion, thermal control, electrical power, and water and oxygen for its crews.
      “Seeing multi-mission hardware arrive at the same time demonstrates the progress we are making on our Artemis missions,” said Amit Kshatriya, deputy associate administrator, Moon to Mars Program, at NASA Headquarters in Washington. “We are going to the Moon together with our industry and international partners and we are manufacturing, assembling, building, and integrating elements for Artemis flights.”
      NASA’s Pegasus barge, the agency’s waterway workhorse for transporting large hardware by sea, ferried multi-mission hardware for the agency’s SLS (Space Launch System) rocket, the Artemis II launch vehicle stage adapter, the “boat-tail” of the core stage for Artemis III, the core stage engine section for Artemis IV, along with ground support equipment needed to move and assemble the large components. The barge pulled into NASA Kennedy’s Launch Complex 39B Turn Basin Thursday.
      The spacecraft factory inside NASA Kennedy’s Neil Armstrong Operations and Checkout Building is set to buzz with additional activity in the coming months. With the Artemis II Orion crew and service modules stacked together and undergoing testing, and engineers outfitting the Artemis III and IV crew modules, engineers soon will connect the newly arrived European Service Module to the crew module adapter, which houses electronic equipment for communications, power, and control, and includes an umbilical connector that bridges the electrical, data, and fluid systems between the crew and service modules.
      The SLS rocket’s cone-shaped launch vehicle stage adapter connects the core stage to the upper stage and protects the rocket’s flight computers, avionics, and electrical devices in the upper stage system during launch and ascent. The adapter will be taken to Kennedy’s Vehicle Assembly Building in preparation for Artemis II rocket stacking operations.
      The boat-tail, which will be used during the assembly of the SLS core stage for Artemis III, is a fairing-like structure that protects the bottom end of the core stage and RS-25 engines. This hardware, picked up at NASA’s Michoud Assembly Facility in New Orleans, will join the Artemis III core stage engine section housed in the spaceport’s Space Systems Processing Facility.
      The Artemis IV SLS core stage engine section arrived from NASA Michoud and also will transfer to the center’s processing facility ahead of final assembly.
      Under the Artemis campaign, NASA will land the first woman, first person of color, and its first international partner astronaut on the lunar surface, establishing long-term exploration for scientific discovery and preparing for human missions to Mars. The agency’s SLS rocket and Orion spacecraft, and supporting ground systems, along with the human landing system, next-generation spacesuits and rovers, and Gateway, serve as NASA’s foundation for deep space exploration.
      For more information on NASA’s Artemis missions, visit:
      https://www.nasa.gov/artemis
      -end-
      Rachel Kraft
      Headquarters, Washington
      202-358-1600
      Rachel.h.kraft@nasa.gov
      Allison Tankersley, Antonia Jaramillo Botero
      Kennedy Space Center, Florida
      321-867-2468
      Allison.p.tankersley@nasa.gov/ antonia.jaramillobotero@nasa.gov
      View the full article
  • Check out these Videos

×
×
  • Create New...