Jump to content

Station Nation: Meet Katie Burlingame, ETHOS Flight Controller and Instructor in the Flight Operations Directorate


NASA

Recommended Posts

  • Publishers

Katie Burlingame is an ETHOS (Environmental and Thermal Operating Systems) flight controller and instructor in the Flight Operations Directorate supporting the International Space Station. Burlingame trains astronauts and flight controllers on the International Space Station’s environmental control systems, internal thermal control systems, and emergency response. Burlingame shares about their path to NASA, what Pride Month means to them, and more. Read on to learn more!

Where are you from?

My dad was in the Coast Guard, so I lived in a few different places growing up, mostly along the East Coast and Southeast. I lived near Orlando, Florida in high school, so that’s usually what I’ll go with for a short answer.

Tell us about your role at NASA.

I execute and plan operations in the Mission Control Center. I train flight controllers and astronauts, specifically for the International Space Station’s environmental control systems, internal thermal control systems, and emergency response.

aga-photo-kaitlin-burlingame.jpg?w=2048
Katie Burlingame demonstrates how to use new emergency response hardware during Starliner-1 crew training.

How would you describe your job to family or friends who may not be familiar with NASA?

For anyone who has seen Apollo 13, I usually say I’m one of the people who figures out what to do in response to “Houston, we have a problem.” Environmental control systems are basically what makes sure there is clean air to breathe and water to drink. Internal thermal control systems are the water lines running throughout the space station that keeps all the computers and other hardware cool.

As far as training goes, the biggest part is training on emergency response, so what to do if there is a fire on the space station or if you start losing air overboard due to a hole in the structure. We have life-size replicas of the space station and simulators that can replicate all its data. This allows us to create opportunities for crew and new flight controllers to practice responding in the situations they could experience aboard the station – sometimes I even get to use a smoke machine!

How long have you been working for NASA?

I have been with the agency for 11 years.

What advice would you give to young individuals aspiring to work in the space industry or at NASA?

Follow the things that you find most interesting. We need people with all kinds of skills in the space industry, so don’t feel like you have to stick to the most traditional path.

What was your path to NASA?

In college, I worked in a lab that built small satellites, which led me to opportunities to participate in the reduced gravity aircraft program and internships at NASA’s Johnson Space Center in Houston. I got a master’s degree in biomedical engineering and was originally planning to work on medical devices after college. While at my first job, the industry I was in was experiencing a wave of layoffs, so when I heard about an opportunity back at Johnson, I decided to apply and have been here ever since.

Two people are working together in a facility. The person on the left is wearing a headset, glasses, a face mask, and a gray polo shirt with a logo, and they are holding a clipboard. The person on the right is wearing a black polo shirt with mission patches, including one with a Russian flag, and they are holding a small piece of equipment.
Katie Burlingame discusses ammonia measurement hardware with Roscosmos cosmonaut Anna Kikina during NASA’s SpaceX Crew-5 emergency training in the SVMF (Space Vehicle Mockup Facility).

Is there someone in the space, aerospace, or science industry that has motivated or inspired you to work for the space program? Or someone you discovered while working for NASA who inspires you?

I’m inspired by the teammates I get to work with every day. Seeing the different skills that people bring to the table, how they handle difficult situations, and come up with creative solutions impresses me and motivates me to keep growing and learning.

What does diversity, equity, and inclusion mean to you? How does it guide you in your work at NASA?

To me, diversity has a lot of aspects because it encompasses all of the things that contribute to someone’s unique experience and perspective. Spaceflight is hard, and solving tough problems requires creative and integrated solutions, which requires teams with a diversity of thought, skills, perspectives, and experiences.

It means ensuring that NASA is comprised of a workforce that reflects the full spectrum of the country we represent, and then making sure that everyone has the resources they need to thrive and are part of a community that welcomes and respects their full selves. I try to keep this as a guiding priority throughout my work, in day-to-day things like the language and assumptions I make when talking with people and in looking for and advocating for larger systemic ways to make improvements. Having a diverse, equitable, and inclusive workplace is the just and fair thing to do, but it also helps us do the best work to accomplish NASA’s missions.

Three people are standing inside a large laboratory environment with metallic structures and equipment in the background.
Katie Burlingame with other ETHOS (Environmental and Thermal Operating Systems) instructors outside the International Space Station mockups in the SVMF.

What is your favorite NASA memory?

I had the opportunity to work on several aspects of the first U.S. crewed vehicle missions. Working with NASA, commercial partners, and the international partner teams to figure out how to best execute training and emergency response was an interesting technical problem and it is great to see all of the things we worked on being used regularly now.

What do you love sharing about station? What’s important to get across to general audiences to help them understand the benefits to life on Earth?

There have been people continuously on the International Space Station for more than 23 years! That’s amazing as a technical achievement, but also an example of successful and sustained international partnership.

What does Pride Month mean to you?

Pride Month is a celebration of the LGBTQIA+ community and the progress that has been made. It’s also a call to action for allies and community members to protect and support LGBTQIA+ community members and their rights, especially the most marginalized.

What does it mean to embrace LGBTQIA+ pride?

To me, embracing pride is embracing the understanding that we are each worthy of honor and respect as we are and creating an environment where others can do the same.

biking-photo-kaitlin-burlingame.jpg?w=20
Katie Burlingame out for a bike ride west of Houston.

Who are some of your LGBTQIA+ role models?

My role models are all of the advocates for LGBTQIA+ rights, past and present, and everyone who shows up in small and big ways as themselves.

What are your hobbies/things you enjoy outside of work?

I like going to see plays and musicals and exploring Houston’s restaurants, coffee shops, and bookstores. When the Houston heat isn’t too bad, I like exploring parks, riding my bike, and doing triathlons (very slowly).

Day launch or night launch?

Night launch!

Favorite space movie?

I don’t have a strong favorite space movie, but my current favorite space books are “Project Hail Mary” by Andy Weir and “The Long Way to a Small, Angry Planet” by Becky Chambers.

NASA “worm” or “meatball” logo?

Meatball.

NASA Insignia

Every day, we’re conducting exciting research aboard our orbiting laboratory that will help us explore further into space and bring benefits back to people on Earth. You can keep up with the latest news, videos, and pictures about space station science on the Station Research & Technology news page. It’s a curated hub of space station research digital media from Johnson and other centers and space agencies.

Sign up for our weekly email newsletter to get the updates delivered directly to you.

Follow updates on social media at @ISS_Research on Twitter, and on the space station accounts on Facebook and Instagram.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      Both Godfrey and Berg underscored the importance of international cooperation in space. Godfrey pointed to the Combined Space Operations initiatives, which brings together 10 nations.
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA astronaut Tracy C. Dyson smiles for a portrait in the vestibule between the Kibo laboratory module and the Harmony module aboard space station.NASA NASA astronaut Tracy C. Dyson is returning home after a six-month mission aboard the International Space Station. While on orbit, Dyson conducted an array of experiments and technology demonstrations that contribute to advancements for humanity on Earth and the agency’s trajectory to the Moon and Mars. 
      Here is a look at some of the science Dyson conducted during her mission: 
      Heart-Shaped Bioprints 
      NASA NASA astronaut Tracy C. Dyson operates the BioFabrication Facility for the Redwire Cardiac Bioprinting Investigation, which 3D prints cardiovascular tissue samples. In microgravity, bio inks used for 3D printing are less likely to settle and retain their shape better than on Earth. Cardiovascular disease is currently the number one cause of death in the United States, and findings from this space station investigation could one day lead to 3D-printed organs such as hearts for patients awaiting transplants. 
      Wicking in Weightlessness 
      NASA NASA astronaut Tracy C. Dyson handles hardware for the Wicking in Gel-Coated Tubes (Gaucho Lung) experiment. This study uses a tube lined with various gel thicknesses to simulate the human respiratory system. A fluid mass known as a liquid plug is then observed as it either blocks or flows through the tube. Data regarding the movement and trailing of the liquid plug allows researchers to design better drug delivery methods to address respiratory ailments. 
      Programming for Future Missions 
      NASA NASA NASA astronaut Tracy C. Dyson runs student-designed software on the free-flying Astrobee robot. This technology demonstration is part of Zero Robotics, a worldwide competition that engages middle school students in writing computer code to address unique specifications. Winning participants get to run their software on an actual Astrobee aboard the space station. This educational opportunity helps inspire the next generation of technology innovators.     
      Robo-Extensions
      NASA As we venture to the Moon and Mars, astronauts may rely more on robots to ensure safety and preserve resources. Through the Surface Avatar study, NASA astronaut Tracy C. Dyson controls a robot on Earth’s surface from a computer aboard station. This technology demonstration aims to toggle between manipulating multiple robots and “diving inside” a specific bot to control as an avatar. This two-way demonstration also evaluates how robot operators respond their robotic counterparts’ efficiency and general output. Applications for Earth use include exploration of inhospitable zones and search and rescue missions after disasters.  
      Capturing Earth’s Essence
      NASA For Crew Earth Observations, astronauts take pictures of Earth from space for research purposes. NASA astronauts Suni Williams (left) and Tracy C. Dyson (right) contribute by aiming handheld cameras from the space station’s cupola to photograph our planet. Images help inform climate and environmental trends worldwide and provide real-time natural disaster assessments. More than four million photographs have been taken of Earth by astronauts from space.  
      Multi-faceted Crystallization Processor 
      NASA NASA astronaut Tracy C. Dyson holds a cassette for Pharmaceutical In-Space Laboratory – 04 (ADSEP-PIL-04), an experiment to crystallize the model proteins lysozyme and insulin. Up to three cassettes with samples can be processed simultaneously in the Advanced Space Experiment Processor (ADSEP), each at an independent temperature. Because lysozyme and insulin have well-documented crystal structures, they can be used to evaluate the hardware’s performance in space. Successful crystallization with ADSEP could lead to production and manufacturing of versatile crystals with pharmaceutical applications.  
      Cryo Care  
      NASA NASA astronauts Tracy C. Dyson and Matthew Dominick preserve research samples in freezers aboard the space station. Cryopreservation is essential for maintaining the integrity of samples for a variety of experiments, especially within the field of biology. The orbiting laboratory has multiple freezer options with varying subzero temperatures. Upon return, frozen samples are delivered back to their research teams for further analysis.    
      Welcoming New Science 
      NASA NASA astronaut Tracy C. Dyson is pictured between the Unity module and Northrop Grumman’s Cygnus spacecraft in preparation for depressurization and departure from the International Space Station. On long-duration missions, visiting vehicles provide necessities for crew daily living as well as new science experiments and supplies for ongoing research. This vehicle brought experiments to test water recovery technology, produce stem cells in microgravity, study the effects of spaceflight on microorganism DNA, and conduct science demonstrations for students.   
      Diana Garcia 
      International Space Station Research Communications Team
      NASA’s Johnson Space Center 
      Keep Exploring Discover More Topics
      Latest News from Space Station Research
      Humans in Space
      Station Science 101
      Expedition 71
      Expedition 71 began on April 5, 2024 and ends in September 2024. This crew will explore neuro-degenerative diseases and therapies,…
      View the full article
    • By NASA
      The X-15 hypersonic rocket-powered aircraft, built by North American Aviation (NAA), greatly expanded our knowledge of flight at speeds exceeding Mach 6 and altitudes above 250,000 feet. A joint project among NASA, the U.S. Air Force, and the U.S. Navy, the X-15’s first powered flight took place on Sept. 17, 1959, at the Flight Research Center, now the Armstrong Flight Research Center, at Edwards Air Force Base (AFB) in California. NAA chief test pilot A. Scott Crossfield piloted this flight and other early test flights before NASA and the Air Force took ownership of the aircraft. Between 1959 and 1968, 12 pilots completed 199 missions and achieved ever higher speeds and altitudes, knowledge and experience that later influenced the development of future programs such as the space shuttle. 

      Left: During its October 1958 rollout ceremony at the North American Aviation (NAA) facility in Los Angeles, NAA pilot A. Scott Crossfield poses in front of the X-15-1. Right: Rollout of X-15-2 at the NAA facility in February 1959. 
      The origins of the X-15 date to 1952, when the Committee on Aerodynamics of the National Advisory Committee for Aeronautics (NACA) adopted a resolution to expand their research portfolio to study flight at altitudes between 12 and 50 miles and Mach numbers between 4 and 10. The Air Force and Navy agreed and conducted joint feasibility studies at NACA’s field centers. In 1955, the Air Force selected North American Aviation (NAA), Los Angeles, to build three X-15 hypersonic aircraft.  
      On Oct. 1, 1958, the new National Aeronautics and Space Administration (NASA) incorporated the NACA centers and inherited the X-15 project. Two weeks later, on Oct. 15, 1958, the rollout of the first of the three aircraft took place at NAA’s Los Angeles facility where several of the early X-15 pilots, including Crossfield, attended. After the ceremony, workers wrapped the aircraft, placed it on a flatbed truck, and drove it overnight to the High Speed Flight Station, renamed by NASA the Flight Research Center in September 1959, where all the X-15 flights took place. Before this first aircraft took to the skies, NAA rolled out X-15-2 on Feb. 27, 1959. The X-15-3 rounded out the small fleet in early 1960. 

      Aerial view of the Flight Research Center, now NASA’s Armstrong Flight Research Center, at Edwards Air Force Base, California, with one of the B-52 carrier aircraft at left and an X-15 at right. Image credit: courtesy JD Barnes Collection. 

      Left: Diagram showing the two main profiles used by the X-15, either for altitude or speed. Right: The twin XLR-11 engines, left, and the more powerful XLR-99 engine used to power the X-15. 
      Like earlier X-planes, a carrier aircraft, in this case a modified B-52 Stratofortress, released the 34,000-pound X-15 at an altitude of 45,000 feet to conserve its fuel for the research mission. Flights took place within the High Range, a flight corridor extending from Wendover AFB in Utah to the Rogers Dry Lake landing zone adjacent to Edwards AFB, with emergency landing zones along the way. Typical research missions lasted eight to 12 minutes and followed either a high-altitude or a high-speed profile following launch from the B-52 and ignition of the X-15’s rocket engine. After burnout of the engine, the pilot guided the aircraft to an unpowered landing on the lakebed runway. To withstand the high temperatures during hypersonic flight and reentry, the X-15’s outer skin consisted of a then-new nickel-chrome alloy called Inconel-X. Because traditional aerodynamic surfaces used for flight control while in the atmosphere do not work in the near vacuum of space, the X-15 used its Ballistic Control System thrusters for attitude control while flying outside the atmosphere.  NAA substituted eight smaller XLR-11 engines that produced only 16,000 pounds of thrust because of delays in the development of the 57,000-pound thrust XLR-99 rocket engine, built specifically for the X-15, For the first 17 months of test flights, the X-15 remained significantly underpowered. NAA chief pilot Crossfield had the primary responsibility for carrying out the initial test flights of the X-15 before handover of the aircraft to NASA and the Air Force. 

      Left: Flight profile of the first unpowered glide test flight of the X-15. Right: A. Scott Crossfield pilots the X-15 during its first unpowered glide test flight in June 1959. 
      With Crossfield at the controls of X-15-1, the first captive flight during which the X-15 remained attached to the B-52’s wing, took place on March 10, 1959. Crossfield completed the first unpowered glide flight of X-15-1 on June 8, the flight lasting just five minutes. 

      Left: The B-52 carrier aircraft taxis on the runway at Edwards Air Force Base in California, with the X-15 and pilot A. Scott Crossfield ready to perform the first powered flight of the hypersonic research aircraft. Right: The B-52 carries the X-15 and Crossfield to the drop altitude. 

      Left: Pilot A. Scott Crossfield is visible in the cockpit of the X-15 shortly before the release from the B-52 carrier aircraft. Image credit: courtesy North American Aviation. Right: The X-15 dumps excess fuel just prior to the drop. 


      Left: The X-15 drops from the B-52 carrier aircraft to begin its first powered flight. Middle: The view from the B-52 as the X-15 drops away. Right: Pilot A. Scott Crossfield has ignited all eight of the X-15’s engines to begin the powered flight. 

      Left: View taken from a chase plane of the X-15 during its glide to the lakebed following its first powered flight. Middle: Pilot A. Scott Crossfield brings the X-15 to a smooth touchdown on the lakebed runway at Edwards Air Force Base in California. Image credit: courtesy North American Aviation. Right: Crossfield hops out of the cockpit at the conclusion of the X-15’s first successful powered flight. 
      On Sept. 17, at the controls of X-15-2, Crossfield completed the first powered flight of an X-15. Firing all eight of the XLR-11 engines for 224 seconds, he reached a speed of Mach 2.11, or 1,393 miles per hour, and an altitude of 52,341 feet. Overcoming a few hardware problems, he brought the aircraft to a successful landing after a flight lasting just over nine minutes and traveling 88 miles. During 12 more flights, Crossfield expanded the aircraft’s flight envelope to Mach 2.97 and 88,116 feet while gathering important data on its flying characteristics. His last three flights used the higher thrust XLR-99 engine, the one designed for the aircraft. Crossfield’s 14th flight on Dec. 6, 1960, marked the end of the contracted testing program, and North American turned the X-15 over to the Air Force and NASA. 

      Standing between the first two aircraft, North American Aviation chief test pilot A. Scott Crossfield, left, symbolically hands over the keys to the X-15 to U.S. Air Force pilot Robert M. White and NASA pilot Neil A. Armstrong at the conclusion of the contracted flight test program. Image credit: courtesy North American Aviation. 

      Left: Chief NASA X-15 pilot Joseph “Joe” A. Walker following his altitude record-setting flight in August 1963. Middle left: Air Force pilot William J. “Pete” Knight following his speed record-setting flight in October 1967. Middle right: NASA pilot Neil A. Armstrong stands next to an X-15. Right: Air Force pilot Joe H. Engle following a flight aboard X-15A-2 in December 1965. 
      Over nine years, Crossfield and 11 other pilots – five NASA, five U.S. Air Force, and one U.S. Navy – completed a total of 199 flights of the X-15, gathering data on the aerodynamic and thermal performance of the aircraft flying to the edge of space and returning to Earth. The pilots also conducted a series of experiments, taking advantage of the plane’s unique characteristics and flight environment. NASA chief pilot Joseph “Joe” A. Walker flew the first of his 25 flights in March 1960. On his final flight on Aug. 22, 1963, he took X-15-3 to an altitude of 354,200 feet, or 67.1 miles, the highest achieved in the X-15 program, and a record for piloted aircraft that stood until surpassed during the final flight of SpaceShipOne on Oct. 4, 2004.  
      On Oct. 3, 1967, Air Force pilot William J. “Pete” Knight flew X-15A-2, with fully fueled external tanks, to an unofficial speed record for a piloted winged vehicle of Mach 6.70, or 4,520 miles per hour. The mark stood until surpassed during the reentry of space shuttle Columbia on April 14, 1981. NASA pilot Neil A. Armstrong and Air Force pilot Joe H. Engle flew the X-15 before joining NASA’s astronaut corps. Armstrong took to the skies seven times in the X-15 prior to becoming an astronaut, where he flew the Gemini VIII mission in 1966 and took humanity’s first steps on the Moon in July 1969. Engle has the unique distinction as the only person to have flown both the X-15 (16 times) and the space shuttle (twice in the atmosphere and twice in space). Of the first powered X-15 flight, Engle said, it “was a real milestone in a program that we still benefit from today.” 
      Explore More
      3 min read NASA, GE Aerospace Advancing Hybrid-Electric Airliners with HyTEC
      Article 3 hours ago 8 min read 55 Years Ago: Space Task Group Proposes Post-Apollo Plan to President Nixon
      Article 1 day ago 7 min read 15 Years Ago: Japan launches HTV-1, its First Resupply Mission to the Space Station
      Article 7 days ago View the full article
    • By NASA
      JAXA (Japan Aerospace Exploration Agency) researchers examined the structures of four titanium-based compounds solidified in levitators in microgravity and on the ground and found that the internal microstructures were generally similar. These results could support development of new materials for use in space manufacturing.

      To produce glass or metal alloys on Earth, raw materials are placed into a container and heated. But reactions between the container and the materials can cause imperfections. The JAXA Electrostatic Levitation Furnace can levitate, melt, and solidify materials without a container. The facility enables measurement of the thermophysical properties of high temperature melts and could accelerate development of innovative materials such as heat resistant ceramics for use in the aerospace and energy industries.
      JAXA (Japan Aerospace Exploration Agency) astronaut Akihiko Hoshide works with the Electrostatic Levitation Furnace.European Space Agency/Thomas Pesquet Satellite 3D imaging of a Peruvian tropical forest demonstrated that measuring leaf traits with remote sensing may provide more accurate predictions of biomass production than structure data such as tree height. Carbon stored or sequestered in forests can help offset emissions that cause climate change, and improved estimates of tropical forest biomass could allow researchers to better evaluate these ecosystems and their offset contributions.

      Global Ecosystem Dynamics Investigation (GEDI) provides high-resolution global observations of Earth’s forests and topography. These observations provide information on carbon and water cycling processes, biodiversity, and habitat, including quantifying carbon stored in vegetation and the potential for future carbon storage. The researchers suggest that estimates of tropical forest biomass could be further improved with data from new satellite missions and by integrating GEDI with dynamic vegetation models that include trait data.

      Learn more from this video and this article.
      The refrigerator-sized Global Ecosystem Dynamics Investigation instrument on the exterior of the International Space Station. NASA/Nick Hague Research indicates that refractive eye surgery is safe, effective, and suitable for astronauts. The study documented stable vision in two astronauts who, a few years prior to flight, underwent photorefractive keratectomy (PRK) and laser-assisted in situ keratomileusis (LASIK), respectively. These visual correction procedures can reduce the logistical complications of wearing glasses or contact lenses in space.

      International Space Station Medical Monitoring collects health data from crew members before, during, and after spaceflight.  The medical evaluation requirements, including vision assessment, apply to all crew members and are part of efforts by all international partners to maintain crew health, ensure mission success, and enable crew members to return to normal life on Earth after their missions.
      NASA astronauts Terry Virts (bottom) and Scott Kelly (top) perform eye exams as part of ongoing studies into crew vision health. NASA JAXA researchers report that accurately assessing the velocity of airflow in front of a spreading flame makes it possible to predict the flammability of thin, flat materials in microgravity. These results mean it could be possible to use ground tests to predict the flammability of solid materials and thus ensure fire safety in spacecraft and space habitations.

      The JAXA Fundamental Research on International Standard of Fire Safety in Space – Base for Safety of Future Manned Missions (FLARE) investigation tested the flammability of various solid materials in different configurations, including filter paper. Microgravity significantly affects combustion phenomena such as the spread of flame over solid materials; while flames cannot spread over solid materials under low-speed oxygen flow in Earth’s gravity, they can in microgravity due to the lack of buoyancy. Testing of the flammability of materials for spacecraft previously has not considered the effect of gravity, and results from this investigation could address this issue, significantly improving fire safety on future exploration missions.
      JAXA astronaut Satoshi Furukawa sets up hardware for the Fundamental Research on International Standard of Fire Safety in Space – Base for Safety of Future Manned Missions investigation. NASA/Jasmin MoghbeliView the full article
    • By NASA
      Manuel Retana arrived in the U.S. at 15 years old, unable to speak English and with nothing but a dream and $200 in his pocket. Now, he plays a crucial role implementing life support systems on spacecraft that will carry humans to the Moon and, eventually, Mars—paving the way for the next frontier of space exploration. 

      A project manager for NASA’s Johnson Space Center Life Support Systems Branch in Houston, Retana helps to ensure astronaut safety aboard the International Space Station and for future Artemis missions. His work involves tracking on-orbit technical issues, managing the cost and schedule impacts of flight projects, and delivering emergency hardware. 
      Manuel Retana stands in front of NASA’s Space Launch System rocket at Kennedy Space Center in Florida. One of his most notable achievements came during the qualification of the Orion Smoke Eater Filter for the Artemis II and III missions. The filter is designed to remove harmful gases and particulates from the crew cabin in the event of a fire inside the spacecraft. Retana was tasked with creating a cost-effective test rig – a critical step for making the filter safe for flight. 

      Retana’s philosophy is simple: “Rockets do not build themselves. People build rockets, and your ability to work with people will define how well your rocket is built.” 

      Throughout his career, Retana has honed his soft skills—communication, leadership, collaboration, and conflict resolution—to foster an environment of success. 

      Retana encourages his colleagues to learn new languages and share their unique perspectives. He even founded NASA’s first Mariachi ensemble, allowing him to share his cultural heritage in the workplace. 

      He believes diversity of thought is a key element in solving complex challenges as well as creating an environment where everyone feels comfortable sharing their perspectives. 

      “You need to be humble and have a willingness to always be learning,” he said. “What makes a strong team is the fact that not everyone thinks the same way.” 
      Manuel Retana, center, performs with the Mariachi Ensemble group at NASA’s Johnson Space Center in Houston. For the future of space exploration, Retana is excited about the democratization of space, envisioning a world where every country has the opportunity to explore. He is eager to see humanity reach the Moon, Mars, and beyond, driven by the quest to answer the universe’s most enigmatic questions. 

      To the Artemis Generation, he says, “Never lose hope, and it is never too late to start following your dreams, no matter how far you are.” 
      View the full article
  • Check out these Videos

×
×
  • Create New...