Jump to content

Station Nation: Meet Katie Burlingame, ETHOS Flight Controller and Instructor in the Flight Operations Directorate


Recommended Posts

  • Publishers
Posted

Katie Burlingame is an ETHOS (Environmental and Thermal Operating Systems) flight controller and instructor in the Flight Operations Directorate supporting the International Space Station. Burlingame trains astronauts and flight controllers on the International Space Station’s environmental control systems, internal thermal control systems, and emergency response. Burlingame shares about their path to NASA, what Pride Month means to them, and more. Read on to learn more!

Where are you from?

My dad was in the Coast Guard, so I lived in a few different places growing up, mostly along the East Coast and Southeast. I lived near Orlando, Florida in high school, so that’s usually what I’ll go with for a short answer.

Tell us about your role at NASA.

I execute and plan operations in the Mission Control Center. I train flight controllers and astronauts, specifically for the International Space Station’s environmental control systems, internal thermal control systems, and emergency response.

aga-photo-kaitlin-burlingame.jpg?w=2048
Katie Burlingame demonstrates how to use new emergency response hardware during Starliner-1 crew training.

How would you describe your job to family or friends who may not be familiar with NASA?

For anyone who has seen Apollo 13, I usually say I’m one of the people who figures out what to do in response to “Houston, we have a problem.” Environmental control systems are basically what makes sure there is clean air to breathe and water to drink. Internal thermal control systems are the water lines running throughout the space station that keeps all the computers and other hardware cool.

As far as training goes, the biggest part is training on emergency response, so what to do if there is a fire on the space station or if you start losing air overboard due to a hole in the structure. We have life-size replicas of the space station and simulators that can replicate all its data. This allows us to create opportunities for crew and new flight controllers to practice responding in the situations they could experience aboard the station – sometimes I even get to use a smoke machine!

How long have you been working for NASA?

I have been with the agency for 11 years.

What advice would you give to young individuals aspiring to work in the space industry or at NASA?

Follow the things that you find most interesting. We need people with all kinds of skills in the space industry, so don’t feel like you have to stick to the most traditional path.

What was your path to NASA?

In college, I worked in a lab that built small satellites, which led me to opportunities to participate in the reduced gravity aircraft program and internships at NASA’s Johnson Space Center in Houston. I got a master’s degree in biomedical engineering and was originally planning to work on medical devices after college. While at my first job, the industry I was in was experiencing a wave of layoffs, so when I heard about an opportunity back at Johnson, I decided to apply and have been here ever since.

Two people are working together in a facility. The person on the left is wearing a headset, glasses, a face mask, and a gray polo shirt with a logo, and they are holding a clipboard. The person on the right is wearing a black polo shirt with mission patches, including one with a Russian flag, and they are holding a small piece of equipment.
Katie Burlingame discusses ammonia measurement hardware with Roscosmos cosmonaut Anna Kikina during NASA’s SpaceX Crew-5 emergency training in the SVMF (Space Vehicle Mockup Facility).

Is there someone in the space, aerospace, or science industry that has motivated or inspired you to work for the space program? Or someone you discovered while working for NASA who inspires you?

I’m inspired by the teammates I get to work with every day. Seeing the different skills that people bring to the table, how they handle difficult situations, and come up with creative solutions impresses me and motivates me to keep growing and learning.

What does diversity, equity, and inclusion mean to you? How does it guide you in your work at NASA?

To me, diversity has a lot of aspects because it encompasses all of the things that contribute to someone’s unique experience and perspective. Spaceflight is hard, and solving tough problems requires creative and integrated solutions, which requires teams with a diversity of thought, skills, perspectives, and experiences.

It means ensuring that NASA is comprised of a workforce that reflects the full spectrum of the country we represent, and then making sure that everyone has the resources they need to thrive and are part of a community that welcomes and respects their full selves. I try to keep this as a guiding priority throughout my work, in day-to-day things like the language and assumptions I make when talking with people and in looking for and advocating for larger systemic ways to make improvements. Having a diverse, equitable, and inclusive workplace is the just and fair thing to do, but it also helps us do the best work to accomplish NASA’s missions.

Three people are standing inside a large laboratory environment with metallic structures and equipment in the background.
Katie Burlingame with other ETHOS (Environmental and Thermal Operating Systems) instructors outside the International Space Station mockups in the SVMF.

What is your favorite NASA memory?

I had the opportunity to work on several aspects of the first U.S. crewed vehicle missions. Working with NASA, commercial partners, and the international partner teams to figure out how to best execute training and emergency response was an interesting technical problem and it is great to see all of the things we worked on being used regularly now.

What do you love sharing about station? What’s important to get across to general audiences to help them understand the benefits to life on Earth?

There have been people continuously on the International Space Station for more than 23 years! That’s amazing as a technical achievement, but also an example of successful and sustained international partnership.

What does Pride Month mean to you?

Pride Month is a celebration of the LGBTQIA+ community and the progress that has been made. It’s also a call to action for allies and community members to protect and support LGBTQIA+ community members and their rights, especially the most marginalized.

What does it mean to embrace LGBTQIA+ pride?

To me, embracing pride is embracing the understanding that we are each worthy of honor and respect as we are and creating an environment where others can do the same.

biking-photo-kaitlin-burlingame.jpg?w=20
Katie Burlingame out for a bike ride west of Houston.

Who are some of your LGBTQIA+ role models?

My role models are all of the advocates for LGBTQIA+ rights, past and present, and everyone who shows up in small and big ways as themselves.

What are your hobbies/things you enjoy outside of work?

I like going to see plays and musicals and exploring Houston’s restaurants, coffee shops, and bookstores. When the Houston heat isn’t too bad, I like exploring parks, riding my bike, and doing triathlons (very slowly).

Day launch or night launch?

Night launch!

Favorite space movie?

I don’t have a strong favorite space movie, but my current favorite space books are “Project Hail Mary” by Andy Weir and “The Long Way to a Small, Angry Planet” by Becky Chambers.

NASA “worm” or “meatball” logo?

Meatball.

NASA Insignia

Every day, we’re conducting exciting research aboard our orbiting laboratory that will help us explore further into space and bring benefits back to people on Earth. You can keep up with the latest news, videos, and pictures about space station science on the Station Research & Technology news page. It’s a curated hub of space station research digital media from Johnson and other centers and space agencies.

Sign up for our weekly email newsletter to get the updates delivered directly to you.

Follow updates on social media at @ISS_Research on Twitter, and on the space station accounts on Facebook and Instagram.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      Live Video from the International Space Station (Seen From The NASA ISS Live Stream)
    • By Amazing Space
      Live Video from the International Space Station (Seen From The NASA ISS Live Stream)
    • By NASA
      5 Min Read NASA’s X-59 Moves Toward First Flight at Speed of Safety
      NASA’s X-59 quiet supersonic research aircraft is seen at dawn with firetrucks and safety personnel nearby during a hydrazine safety check at U.S. Air Force Plant 42 in Palmdale, California, on Aug. 18, 2025. The operation highlights the extensive precautions built into the aircraft’s safety procedures for a system that serves as a critical safeguard, ensuring the engine can be restarted in flight as the X-59 prepares for its first flight. Credits: Lockheed Martin As NASA’s one-of-a-kind X-59 quiet supersonic research aircraft approaches first flight, its team is mapping every step from taxi and takeoff to cruising and landing – and their decision-making is guided by safety.
      First flight will be a lower-altitude loop at about 240 mph to check system integration, kicking off a phase of flight testing focused on verifying the aircraft’s airworthiness and safety. During subsequent test flights, the X-59 will go higher and faster, eventually exceeding the speed of sound. The aircraft is designed to fly supersonic while generating a quiet thump rather than a loud sonic boom.
      To help ensure that first flight – and every flight after that – will begin and end safely, engineers have layered protection into the aircraft.
      The X-59’s Flight Test Instrumentation System (FTIS) serves as one of its primary record keepers, collecting and transmitting audio, video, data from onboard sensors, and avionics information – all of which NASA will track across the life of the aircraft.
      “We record 60 different streams of data with over 20,000 parameters on board,” said Shedrick Bessent, NASA X-59 instrumentation engineer. “Before we even take off, it’s reassuring to know the system has already seen more than 200 days of work.”
      Through ground tests and system evaluations, the system has already generated more than 8,000 files over 237 days of recording. That record provides a detailed history that helps engineers verify the aircraft’s readiness for flight.
      Maintainers perform a hydrazine safety check on the agency’s quiet supersonic X-59 aircraft at U.S. Air Force Plant 42 in Palmdale, California, on Aug. 18, 2025. Hydrazine is a highly toxic chemical, but it serves as a critical backup to restart the engine in flight, if necessary, and is one of several safety features being validated ahead of the aircraft’s first flight.Credits: Lockheed Martin “There’s just so much new technology on this aircraft, and if a system like FTIS can offer a bit of relief by showing us what’s working – with reliability and consistency – that reduces stress and uncertainty,” Bessent said. “I think that helps the project just as much as it helps our team.”
      The aircraft also uses a digital fly-by-wire system that will keep the aircraft stable and limit unsafe maneuvers. First developed in the 1970s at NASA’s Armstrong Flight Research Center in Edwards, California, digital fly-by-wire replaced how aircraft were flown, moving away from traditional cables and pulleys to computerized flight controls and actuators.
      On the X-59, the pilot’s inputs – such as movement of the stick or throttle – are translated into electronic signals and decoded by a computer. Those signals are then sent through fiber-optic wires to the aircraft’s surfaces, like its wings and tail.
      Additionally, the aircraft uses multiple computers that back each other up and keep the system operating. If one fails, another takes over. The same goes for electrical and hydraulic systems, which also have independent backup systems to ensure the aircraft can fly safely.
      Onboard batteries back up the X-59’s hydraulic and electrical systems, with thermal batteries driving the electric pump that powers hydraulics. Backing up the engine is an emergency restart system that uses hydrazine, a highly reactive liquid fuel. In the unlikely event of a loss of power, the hydrazine system would restart the engine in flight. The system would help restore power so the pilot could stabilize or recover the aircraft.
      Maintainers perform a hydrazine safety check on NASA’s quiet supersonic X-59 aircraft at U.S. Air Force Plant 42 in Palmdale, California, on Aug. 18, 2025. Hydrazine is a highly toxic chemical, but it serves as a critical backup to restart the engine in flight, if necessary, which is one of several safety features being validated ahead of the aircraft’s first flight. Credits: Lockheed Martin Protective Measures
      Behind each of these systems is a team of engineers, technicians, safety and quality assurance experts, and others. The team includes a crew chief responsible for maintenance on the aircraft and ensuring the aircraft is ready for flight.
      “I try to always walk up and shake the crew chief’s hand,” said Nils Larson, NASA X-59 lead test pilot. “Because it’s not your airplane – it’s the crew chief’s airplane – and they’re trusting you with it. You’re just borrowing it for an hour or two, then bringing it back and handing it over.”
      Larson, set to serve as pilot for first flight, may only be borrowing the aircraft from the X-59’s crew chiefs – Matt Arnold from X-59 contractor Lockheed Martin and Juan Salazar from NASA – but plenty of the aircraft’s safety systems were designed specifically to protect the pilot in flight.
      The X-59’s life support system is designed to deliver oxygen through the pilot’s mask to compensate for the decreased atmospheric pressure at the aircraft’s cruising altitude of 55,000 feet – altitudes more than twice as high as that of a typical airliner. In order to withstand high-altitude flight, Larson will also wear a counter-pressure garment, or g-suit, similar to what fighter pilots wear.
      In the unlikely event it’s needed, the X-59 also features an ejection seat and canopy adapted from a U.S. Air Force T-38 trainer, which comes equipped with essentials like a first aid kit, radio, and water. Due to the design, build, and test rigor put into the X-59, the ejection seat is a safety measure.
      All these systems form a network of safety, adding confidence to the pilot and engineers as they approach to the next milestone – first flight.
      “There’s a lot of trust that goes into flying something new,” Larson said. “You’re trusting the engineers, the maintainers, the designers – everyone who has touched the aircraft. And if I’m not comfortable, I’m not getting in. But if they trust the aircraft, and they trust me in it, then I’m all in.”
      Share
      Details
      Last Updated Sep 12, 2025 EditorDede DiniusContactNicolas Cholulanicolas.h.cholula@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Advanced Air Vehicles Program Aeronautics Aeronautics Research Mission Directorate Ames Research Center Glenn Research Center Langley Research Center Low Boom Flight Demonstrator Quesst (X-59) Supersonic Flight Explore More
      3 min read NASA, War Department Partnership Tests Boundaries of Autonomous Drone Operations
      Article 20 minutes ago 3 min read NASA, Embry-Riddle Enact Agreement to Advance Research, Educational Opportunities
      Article 24 hours ago 4 min read NASA Glenn Tests Mini-X-Ray Technology to Advance Space Health Care  
      Article 1 week ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Researchers in the Verification and Validation Lab at NASA’s Ames Research Center in California’s Silicon Valley monitor a simulated drone’s flight path during a test of the FUSE demonstration.NASA/Brandon Torres Navarrete Through an ongoing collaboration, NASA and the Department of War are working to advance the future of modern drones to support long distance cargo transportation that could increase efficiency, reduce human workload, and enhance safety.  
      Researchers from NASA’s Ames Research Center in California’s Silicon Valley recently participated in a live flight demonstration showcasing how drones can successfully fly without their operators being able to see them, a concept known as beyond visual line of sight (BVLOS).  
      Cargo drones, a type of Unmanned Aerial Systems (UAS), carried various payloads more than 75 miles across North Dakota, between Grand Forks Air Force Base and Cavalier Space Force Station. This demonstration was conducted as part of the War Department’s UAS Logistics, Traffic, Research, and Autonomy (ULTRA) effort. 
      NASA’s UAS Service Supplier (USS) technology helped to demonstrate that cargo drones could operate safely even in complex, shared airspace. During the tests, flight data including location, altitude, and other critical data were transmitted live to the NASA system, ensuring full situational awareness throughout the demonstration. 
      Terrence Lewis and Sheryl Jurcak, members of the FUSE project team at NASA Ames, discuss the monitoring efforts of the FUSE demonstration at the Airspace Operations Lab. NASA/Brandon Torres Navarrete The collaboration between NASA and the Department of War is known as the Federal USS Synthesis Effort (FUSE). The demonstration allowed FUSE researchers to test real-time tracking, situational awareness, and other factors important to safely integrating of drone traffic management into U.S. national airspace. The FUSE work marks an important step towards routine, scalable autonomous cargo drone operations and broader use for future military logistics. 
      “NASA and the Department of War have a long and storied partnership, collaborating with one another to contribute to continued advancement of shared American ideals,” said Todd Ericson, senior advisor to the NASA administrator. “FUSE builds upon our interagency cooperation to contribute enhanced capabilities for drones flying beyond the visual line of sight. This mission is the next big step toward true autonomous flight and will yield valuable insights that we can leverage as both the commercial drone, cargo and urban air taxi industries continue to expand and innovate. As always, safety is of paramount importance at NASA, and we are working with our partners at the FAA and Department of Transportation to ensure we regulate this appropriately.” 
      Autonomous and semi-autonomous drones could potentially support a broad range of tasks for commercial, military, and private users. They could transport critical medical supplies to remote locations, monitor wildfires from above, allow customers to receive deliveries directly in their backyards. NASA is researching technology to further develop the infrastructure needed for these operations to take place safely and effectively, without disrupting the existing U.S. airspace. 
      “This system is crucial for enabling safe, routine BVLOS operations,” said Terrence Lewis, FUSE project manager at NASA Ames. “It ensures all stakeholders can see and respond to drone activity, which provides the operator with greater situational awareness.” 
      NASA Ames is collaborating on the FUSE project with the War Department’s Office of the Undersecretary of War for Acquisition and Sustainment. The NASA FUSE effort is also collaborating with ULTRA, a multi-entity partnership including the Office of the Secretary of War, the County of Grand Forks, the Northern Plains UAS Test Site, the Grand Sky Development, the Air Force Research Laboratory, and several other commercial partners, aiming to bolster capabilities within the National Airspace System. 
      Share
      Details
      Last Updated Sep 12, 2025 Related Terms
      Ames Research Center Aeronautics Aeronautics Research General Explore More
      5 min read NASA’s X-59 Moves Toward First Flight at Speed of Safety
      Article 5 minutes ago 1 min read Drag Prediction Workshop Series
      Article 8 hours ago 2 min read NASA Ames Science Directorate: Stars of the Month – September 2025
      Article 23 hours ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Ames Science Directorate’s Stars of the Month: September 2025

      The NASA Ames Science Directorate recognizes the outstanding contributions of (pictured left to right) Taejin Park, Lydia Schweitzer, and Rachel Morgan. Their commitment to the NASA mission represents the entrepreneurial spirit, technical expertise, and collaborative disposition needed to explore this world and beyond.
      Earth Science Star: Taejin Park
      Taejin Park is a NASA Earth eXchange (NEX) research scientist within the Biospheric Science Branch, for the Bay Area Environmental Research Institute (BAERI). As the Project Scientist for the Wildfire, Ecosystem Resilience, & Risk Assessment (WERK) project, he has exhibited exemplary leadership and teamwork leading to this multi-year study with the California Natural Resources Agency (CNRA) and California Air Resources Board (CARB) to develop tracking tools of statewide ecological condition, disturbance, and recovery efforts related to wildfires.
      Space Science and Astrobiology Star: Lydia Schweitzer
      Lydia Schweitzer is a research scientist within the Planetary Systems Branch for the Bay Area Environmental Research Institute (BAERI) as a member of the Neutron Spectrometer System (NSS) team with broad contributions in instrumentation, robotic rovers and lunar exploration. Lydia is recognized for her leadership on a collaborative project to design and build a complex interface unit that is crucial for NSS to communicate with the Japanese Space Agency’s Lunar Polar eXploration rover mission (LUPEX). In addition, she is recognized for her role as an instrument scientist for the Volatiles Investigating Polar Exploration Rover (VIPER) and MoonRanger missions.
      Space Science and Astrobiology Star: Rachel Morgan
      Rachel Morgan is an optical scientist in the Astrophysics Branch for the SETI Institute. As AstroPIC’s lead experimentalist and the driving force behind the recently commissioned photonic testbed at NASA Ames, this month she achieved a record 92 dB on-chip suppression on a single photonic-integrated chip (PIC) output channel. This advances critical coronagraph technology and is a significant milestone relevant to the Habitable Worlds Observatory.
      View the full article
  • Check out these Videos

×
×
  • Create New...