Jump to content

NASA’s Juno Gets a Close-Up Look at Lava Lakes on Jupiter’s Moon Io


NASA

Recommended Posts

  • Publishers

6 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Jupiter’s moon Io
The JunoCam instrument aboard NASA’s Juno spacecraft captured two volcanic plumes rising above the horizon of Jupiter’s moon Io. The image was taken Feb. 3 from a distance of about 2,400 miles (3,800 kilometers).
Image data: NASA/JPL-Caltech/SwRI/MSSS, Image processing by Andrea Luck (CC BY)

Infrared imagery from the solar-powered spacecraft heats up the discussion on the inner workings of Jupiter’s hottest moon.

New findings from NASA’s Juno probe provide a fuller picture of how widespread the lava lakes are on Jupiter’s moon Io and include first-time insights into the volcanic processes at work there. These results come courtesy of Juno’s Jovian Infrared Auroral Mapper (JIRAM) instrument, contributed by the Italian Space Agency, which “sees” in infrared light. Researchers published a paper on Juno’s most recent volcanic discoveries on June 20 in the journal Nature Communications Earth and Environment.

Io has intrigued the astronomers since 1610, when Galileo Galilei first discovered the Jovian moon, which is slightly larger than Earth. Some 369 years later, NASA’s Voyager 1 spacecraft captured a volcanic eruption on the moon. Subsequent missions to Jupiter, with more Io flybys, discovered additional plumes — along with lava lakes. Scientists now believe Io, which is stretched and squeezed like an accordion by neighboring moons and massive Jupiter itself, is the most volcanically active world in the solar system. But while there are many theories on the types of volcanic eruptions across the surface of the moon, little supporting data exists.

In both May and October 2023, Juno flew by Io, coming within about 21,700 miles (35,000 kilometers) and 8,100 miles (13,000 kilometers), respectively. Among Juno’s instruments getting a good look at the beguiling moon was JIRAM.

Infrared data
Infrared data collected Oct. 15, 2023, by the JIRAM instrument aboard NASA’s Juno shows Chors Patera, a lava lake on Jupiter’s moon Io. The team believes the lake is largely covered by a thick, molten crust, with a hot ring around the edges where lava from Io’s interior is directly exposed to space.
NASA/JPL-Caltech/SwRI/ASI/INAF/JIRAM/MSSS

Designed to capture the infrared light (which is not visible to the human eye) emerging from deep inside Jupiter, JIRAM probes the weather layer down to 30 to 45 miles (50 to 70 kilometers) below the gas giant’s cloud tops. But during Juno’s extended mission, the mission team has also used the instrument to study the moons Io, Europa, Ganymede, and Callisto. The JIRAM Io imagery showed the presence of bright rings surrounding the floors of numerous hot spots.

“The high spatial resolution of JIRAM’s infrared images, combined with the favorable position of Juno during the flybys, revealed that the whole surface of Io is covered by lava lakes contained in caldera-like features,” said Alessandro Mura, a Juno co-investigator from the National Institute for Astrophysics in Rome. “In the region of Io’s surface in which we have the most complete data, we estimate about 3% of it is covered by one of these molten lava lakes.” (A caldera is a large depression formed when a volcano erupts and collapses.)

Fire-Breathing Lakes

JIRAM’s Io flyby data not only highlights the moon’s abundant lava reserves, but also provides a glimpse of what may be going on below the surface. Infrared images of several Io lava lakes show a thin circle of lava at the border, between the central crust that covers most of the lava lake and the lake’s walls. Recycling of melt is implied by the lack of lava flows on and beyond the rim of the lake, indicating that there is a balance between melt that has erupted into the lava lakes and melt that is circulated back into the subsurface system.

This animation is an artist’s concept of Loki Patera, a lava lake on Jupiter’s moon Io, made using data from the JunoCam imager aboard NASA’s Juno spacecraft. With multiple islands in its interior, Loki is a depression filled with magma and rimmed with molten lava. NASA/JPL-Caltech/SwRI/MSSS

“We now have an idea of what is the most frequent type of volcanism on Io: enormous lakes of lava where magma goes up and down,” said Mura. “The lava crust is forced to break against the walls of the lake, forming the typical lava ring seen in Hawaiian lava lakes. The walls are likely hundreds of meters high, which explains why magma is generally not observed spilling out of the paterae” — bowl-shaped features created by volcanism — “and moving across the moon’s surface.”

JIRAM data suggests that most of the surface of these Io hot spots is composed of a rocky crust that moves up and down cyclically as one contiguous surface due to the central upwelling of magma. In this hypothesis, because the crust touches the lake’s walls, friction keeps it from sliding, causing it to deform and eventually break, exposing lava just below the surface.

An alternative hypothesis remains in play: Magma is welling up in the middle of the lake, spreading out and forming a crust that sinks along the rim of the lake, exposing lava.

“We are just starting to wade into the JIRAM results from the close flybys of Io in December 2023 and February 2024,” said Scott Bolton, principal investigator for Juno at the Southwest Research Institute in San Antonio. “The observations show fascinating new information on Io’s volcanic processes. Combining these new results with Juno’s longer-term campaign to monitor and map the volcanoes on Io’s never-before-seen north and south poles, JIRAM is turning out to be one of the most valuable tools to learn how this tortured world works.”

Juno executed its 62nd flyby of Jupiter — which included an Io flyby at an altitude of about 18,175 miles (29,250 kilometers) — on June 13. The 63rd flyby of the gas giant is scheduled for July 16.

More About the Mission

NASA’s Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the Juno mission for the principal investigator, Scott Bolton, of the Southwest Research Institute in San Antonio. Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington. The Italian Space Agency (ASI) funded the Jovian InfraRed Auroral Mapper. Lockheed Martin Space in Denver built and operates the spacecraft.

More information about Juno is available at:

https://science.nasa.gov/mission/juno

News Media Contacts

DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov

Karen Fox / Charles Blue
NASA Headquarters
202-385-1287 / 202-802-5345
karen.c.fox@nasa.gov / charles.e.blue@nasa.gov

Deb Schmid
Southwest Research Institute, San Antonio
210-522-2254dschmid@swri.org

Share

Details

Last Updated
Jun 26, 2024

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
      Sols 4295-4296: A Martian Moon and Planet Earth
      Using an onboard focusing process, the Mars Hand Lens Imager (MAHLI) aboard NASA’s Mars rover Curiosity created this product by merging two to eight images previously taken by the MAHLI, which is located on the turret at the end of the rover’s robotic arm. Curiosity performed the merge on Sept. 4, 2024, at 06:30:48 UTC — sol 4294, or Martian day 4,294 of the Mars Science Laboratory mission. The onboard focus merge is sometimes performed on images acquired the same sol as the merge, and sometimes using pictures obtained earlier. Focus merging is a method to make a composite of images of the same target acquired at different focus positions to bring as many features as possible into focus in a single image. The MAHLI focus merge also serves as a means to reduce the number of images sent back to Earth. Each focus merge produces two images: a color, best-focus product and a black-and-white image that scientists can use to estimate focus position for each element of the best-focus product. So up to eight images can be merged, but the number of images returned to Earth is two. NASA/JPL-Caltech/MSSS Earth planning date: Wednesday, Sept. 4, 2024
      Today’s two-sol plan contains the usual science blocks filled with contact science and remote science to observe and assess the geology surrounding us. However, the Mastcam team is hoping to capture a special celestial event above the Martian skyline as one of Mars’ moons, Phobos, will be in conjunction with Earth on the evening of the first sol of this plan. So everyone look up, and smile for the camera!
      Coming back to our beautiful workspace, in this plan there is a focus on targeting the different colors and tones we can see in the bedrock with our suite of instruments. In the image above we can see some of these varying tones — including gray areas, lighter-toned areas, and areas of tan-colored bedrock — with an image from the MAHLI instrument, Curiosity’s onboard hand lens.
      APXS is targeting “Campfire Lake,” a lighter-toned area, and “Gemini,” a more gray-toned area situated in front of the rover. MAHLI is taking a suite of close-up images of these targets too. ChemCam is then taking two LIBS measurements of “Crazy Lake” and “Foolish Lake,” both of which appear to have lighter tones. Mastcam is documenting this whole area with a workspace mosaic and an 8×2 mosaic of “Picture Puzzle,” named after the rock in the image above that was taken during the previous plan. Mastcam will also be capturing a 6×3 mosaic of an outcrop named “Outguard Spire” that has an interesting gray rim. Looking further afield, ChemCam has planned a long-distance RMI image of the yardang unit and Navcam is taking a suprahorizon movie and dust-devil survey for our continued observations of the atmosphere to round out this plan.
      Written by Emma Harris, Graduate Student at Natural History Museum, London
      Share








      Details
      Last Updated Sep 05, 2024 Related Terms
      Blogs Explore More
      2 min read Sol 4294: Return to McDonald Pass


      Article


      15 hours ago
      3 min read Sols 4291-4293: Fairview Dome, the Sequel


      Article


      16 hours ago
      3 min read Behind the Scenes at the 2024 Mars 2020 Science Team Meeting
      The Mars 2020 Science Team meets in Pasadena for 3 days of science synthesis


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      On the left, the Canopee transport carrier containing the European Service Module for NASA’s Artemis III mission arrives at Port Canaveral in Florida, on Tuesday, Sept. 3, 2024, before completing the last leg of its journey to the agency’s Kennedy Space Center’s Neil A. Armstrong Operations and Checkout via truck. On the right, NASA’s Pegasus barge, carrying several pieces of hardware for Artemis II, III, and IV arrives at NASA Kennedy’s Launch Complex 39 turn basin wharf on Thursday, Sept. 5, 2024. Credit: NASA From across the Atlantic Ocean and through the Gulf of Mexico, two ships converged, delivering key spacecraft and rocket components of NASA’s Artemis campaign to the agency’s Kennedy Space Center in Florida.
      On Sept. 3, ESA (European Space Agency) marked a milestone in the Artemis III mission as its European-built service module for NASA’s Orion spacecraft completed a transatlantic journey from Bremen, Germany, to Port Canaveral, Florida, where technicians moved it to nearby NASA Kennedy. Transported aboard the Canopée cargo ship, the European Service Module—assembled by Airbus with components from 10 European countries and the U.S.—provides propulsion, thermal control, electrical power, and water and oxygen for its crews.
      “Seeing multi-mission hardware arrive at the same time demonstrates the progress we are making on our Artemis missions,” said Amit Kshatriya, deputy associate administrator, Moon to Mars Program, at NASA Headquarters in Washington. “We are going to the Moon together with our industry and international partners and we are manufacturing, assembling, building, and integrating elements for Artemis flights.”
      NASA’s Pegasus barge, the agency’s waterway workhorse for transporting large hardware by sea, ferried multi-mission hardware for the agency’s SLS (Space Launch System) rocket, the Artemis II launch vehicle stage adapter, the “boat-tail” of the core stage for Artemis III, the core stage engine section for Artemis IV, along with ground support equipment needed to move and assemble the large components. The barge pulled into NASA Kennedy’s Launch Complex 39B Turn Basin Thursday.
      The spacecraft factory inside NASA Kennedy’s Neil Armstrong Operations and Checkout Building is set to buzz with additional activity in the coming months. With the Artemis II Orion crew and service modules stacked together and undergoing testing, and engineers outfitting the Artemis III and IV crew modules, engineers soon will connect the newly arrived European Service Module to the crew module adapter, which houses electronic equipment for communications, power, and control, and includes an umbilical connector that bridges the electrical, data, and fluid systems between the crew and service modules.
      The SLS rocket’s cone-shaped launch vehicle stage adapter connects the core stage to the upper stage and protects the rocket’s flight computers, avionics, and electrical devices in the upper stage system during launch and ascent. The adapter will be taken to Kennedy’s Vehicle Assembly Building in preparation for Artemis II rocket stacking operations.
      The boat-tail, which will be used during the assembly of the SLS core stage for Artemis III, is a fairing-like structure that protects the bottom end of the core stage and RS-25 engines. This hardware, picked up at NASA’s Michoud Assembly Facility in New Orleans, will join the Artemis III core stage engine section housed in the spaceport’s Space Systems Processing Facility.
      The Artemis IV SLS core stage engine section arrived from NASA Michoud and also will transfer to the center’s processing facility ahead of final assembly.
      Under the Artemis campaign, NASA will land the first woman, first person of color, and its first international partner astronaut on the lunar surface, establishing long-term exploration for scientific discovery and preparing for human missions to Mars. The agency’s SLS rocket and Orion spacecraft, and supporting ground systems, along with the human landing system, next-generation spacesuits and rovers, and Gateway, serve as NASA’s foundation for deep space exploration.
      For more information on NASA’s Artemis missions, visit:
      https://www.nasa.gov/artemis
      -end-
      Rachel Kraft
      Headquarters, Washington
      202-358-1600
      Rachel.h.kraft@nasa.gov
      Allison Tankersley, Antonia Jaramillo Botero
      Kennedy Space Center, Florida
      321-867-2468
      Allison.p.tankersley@nasa.gov/ antonia.jaramillobotero@nasa.gov
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Data from one of the two CubeSats that comprise NASA’s PREFIRE mission was used to make this data visualization showing brightness temperature — the intensity of infrared emissions — over Greenland. Red represents more intense emissions; blue indicates lower intensities. The data was captured in July.
       NASA’s Scientific Visualization Studio The PREFIRE mission will help develop a more detailed understanding of how much heat the Arctic and Antarctica radiate into space and how this influences global climate.
      NASA’s newest climate mission has started collecting data on the amount of heat in the form of far-infrared radiation that the Arctic and Antarctic environments emit to space. These measurements by the Polar Radiant Energy in the Far-Infrared Experiment (PREFIRE) are key to better predicting how climate change will affect Earth’s ice, seas, and weather — information that will help humanity better prepare for a changing world.
      One of PREFIRE’s two shoebox-size cube satellites, or CubeSats, launched on May 25 from New Zealand, followed by its twin on June 5. The first CubeSat started sending back science data on July 1. The second CubeSat began collecting science data on July 25, and the mission will release the data after an issue with the GPS system on this CubeSat is resolved.
      The PREFIRE mission will help researchers gain a clearer understanding of when and where the Arctic and Antarctica emit far-infrared radiation (wavelengths greater than 15 micrometers) to space. This includes how atmospheric water vapor and clouds influence the amount of heat that escapes Earth. Since clouds and water vapor can trap far-infrared radiation near Earth’s surface, they can increase global temperatures as part of a process known as the greenhouse effect. This is where gases in Earth’s atmosphere — such as carbon dioxide, methane, and water vapor — act as insulators, preventing heat emitted by the planet from escaping to space.
      “We are constantly looking for new ways to observe the planet and fill in critical gaps in our knowledge. With CubeSats like PREFIRE, we are doing both,” said Karen St. Germain, director of the Earth Science Division at NASA Headquarters in Washington. “The mission, part of our competitively-selected Earth Venture program, is a great example of the innovative science we can achieve through collaboration with university and industry partners.”
      Earth absorbs much of the Sun’s energy in the tropics; weather and ocean currents transport that heat toward the Arctic and Antarctica, which receive much less sunlight. The polar environment — including ice, snow, and clouds — emits a lot of that heat into space, much of which is in the form of far-infrared radiation. But those emissions have never been systematically measured, which is where PREFIRE comes in.
      “It’s so exciting to see the data coming in,” said Tristan L’Ecuyer, PREFIRE’s principal investigator and a climate scientist at the University of Wisconsin, Madison. “With the addition of the far-infrared measurements from PREFIRE, we’re seeing for the first time the full energy spectrum that Earth radiates into space, which is critical to understanding climate change.”
      This visualization of PREFIRE data (above) shows brightness temperatures — or the intensity of radiation emitted from Earth at several wavelengths, including the far-infrared. Yellow and red indicate more intense emissions originating from Earth’s surface, while blue and green represent lower emission intensities coinciding with colder areas on the surface or in the atmosphere.
      The visualization starts by showing data on mid-infrared emissions (wavelengths between 4 to 15 micrometers) taken in early July during several polar orbits by the first CubeSat to launch. It then zooms in on two passes over Greenland. The orbital tracks expand vertically to show how far-infrared emissions vary through the atmosphere. The visualization ends by focusing on an area where the two passes intersect, showing how the intensity of far-infrared emissions changed over the nine hours between these two orbits.
      The two PREFIRE CubeSats are in asynchronous, near-polar orbits, which means they pass over the same spots in the Arctic and Antarctic within hours of each other, collecting the same kind of data. This gives researchers a time series of measurements that they can use to study relatively short-lived phenomena like ice sheet melting or cloud formation and how they affect far-infrared emissions over time.
      More About PREFIRE
      The PREFIRE mission was jointly developed by NASA and the University of Wisconsin-Madison. A division of Caltech in Pasadena, California, NASA’s Jet Propulsion Laboratory manages the mission for NASA’s Science Mission Directorate and provided the spectrometers. Blue Canyon Technologies built and now operates the CubeSats, and the University of Wisconsin-Madison is processing and analyzing the data collected by the instruments.
      To learn more about PREFIRE, visit:
      https://science.nasa.gov/mission/prefire/
      5 Things to Know About NASA’s Tiny Twin Polar Satellites Twin NASA Satellites Ready to Help Gauge Earth’s Energy Balance News Media Contacts
      Jane J. Lee / Andrew Wang
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-0307 / 626-379-6874
      jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
      2024-116
      Share
      Details
      Last Updated Sep 03, 2024 Related Terms
      PREFIRE (Polar Radiant Energy in the Far-InfraRed Experiment) Climate Change Earth Earth Science Polar Explore More
      2 min read NASA Earth Science Education Collaborative Member Co-Authors Award-Winning Paper in Insects
      On August 13, 2024, the publishers of the journal Insects notified authors of three papers…
      Article 4 hours ago 5 min read NASA JPL Developing Underwater Robots to Venture Deep Below Polar Ice
      Article 5 days ago 7 min read NASA Project in Puerto Rico Trains Students in Marine Biology
      Article 6 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Technicians test a set of massive solar arrays measuring about 46.5 feet (14.2 meters) long and about 13.5 feet (4.1 meters) high for NASA’s Europa Clipper spacecraft inside the agency’s Payload Hazardous Servicing Facility at Kennedy Space Center in Florida on Aug. 7.Credits: NASA/Kim Shiflett NASA and SpaceX are targeting a launch period opening Thursday, Oct. 10, for the agency’s Europa Clipper mission, which will help scientists determine if one of Jupiter’s icy moons could support life. The mission will launch on a SpaceX Falcon Heavy rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.
      Europa Clipper will carry nine instruments and a gravity science experiment aboard to gather detailed measurements as it orbits Jupiter and conducts multiple close flybys of its moon, Europa. Research suggests an ocean twice the volume of all of Earth’s oceans exists under Europa’s icy crust.
      Media interested in covering the Europa Clipper launch must apply for media accreditation. Deadlines for accreditation are as follows:
      U.S. citizens representing domestic or international media must apply for accreditation by 11:59 p.m. EDT, Friday, Sept. 27. International media without U.S. citizenship must apply by 11:59 p.m., Friday, Sept. 20. Media requiring special logistical arrangements, such as space for satellite trucks, tents, or electrical connections, should email ksc-media-accreditat@mail.nasa.gov by Tuesday, Oct. 1.
      A copy of NASA’s media accreditation policy is available online. For questions about accreditation, please email: ksc-media-accreditat@mail.nasa.gov. For other mission questions, please contact NASA Kennedy’s newsroom at 321-867-2468.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo: 321-501-8425, o Messod Bendayan: 256-930-1371.
      Accredited media will have the opportunity to participate in a series of prelaunch briefings and interviews with key mission personnel, including a briefing the week of Sept. 9. NASA will communicate additional details regarding the media event schedule as the launch date approaches.
      NASA also will post updates on spacecraft launch preparations on NASA’s Europa Clipper blog.
      Clipper’s primary science goal is to determine whether there are places below the surface of Europa that could support life. The mission’s three main science objectives are to understand the nature of the ice shell and the ocean beneath it, along with the moon’s composition and geology. The mission’s detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet.
      Managed by Caltech in Pasadena, California, NASA’s Jet Propulsion Laboratory in Southern California leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, for NASA Headquarters in Washington. The main spacecraft body was designed by APL in collaboration with JPL and NASA’s Goddard Space Flight Center in Greenbelt, Maryland. The Planetary Missions Program Office at NASA’s Marshall Space Flight Center in Huntsville, Alabama, executes program management of the Europa Clipper mission.
      NASA’s Launch Services Program, based at Kennedy, manages the launch service for the Europa Clipper spacecraft.
      For further details about the mission and updates on launch preparations, visit:
      https://science.nasa.gov/mission/europa-clipper
      -end-
      Leejay Lockhart
      Kennedy Space Center, Florida
      321-747-8310
      leejay.lockhart@nasa.gov
      Karen Fox / Alana Johnson
      NASA Headquarters, Washington
      202-358-1600 / 202-358-1501
      karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov
      Julian Coltre
      NASA Headquarters, Washington
      202-358-1100
      Julian.n.coltre@nasa.gov
      Share
      Details
      Last Updated Sep 03, 2024 LocationNASA Headquarters Related Terms
      Europa Clipper Europa Jet Propulsion Laboratory Jupiter Jupiter Moons Kennedy Space Center Launch Services Program NASA Headquarters Space Operations Mission Directorate View the full article
    • By NASA
      Lunar geologist Zachary Morse scrabbles over Earth’s rocky landscapes to test equipment for future missions to the Moon and Mars.
      Name: Zachary Morse
      Title: Assistant Research Scientist in Planetary Geology
      Organization: The Planetary Geology, Geophysics and Geochemistry Laboratory, Science Directorate (Code 698)
      Zachary Morse is an assistant research scientist in planetary geology at NASA’s Goddard Space Flight Center in Greenbelt, Md. Photo courtesy of Zachary Morse What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission?
      I work with teams that integrate field instrumentation into future lunar and Mars exploration missions. We go to analog field sites, places on Earth that are geologically similar to the Moon or Mars, to test field instruments. I also support the development of science operations for crewed exploration of the lunar surface.
      Why did you become a geologist? What is your educational background?
      I always knew that I wanted to study space. In college I started in engineering, but switched to geology because much of the science NASA does on the Moon or Mars involves studying the rocks.
      In 2013, I got a B.S. in geology from West Virginia University. In 2018, I got a Ph.D. in planetary science from Western University in London, Ontario.
      “I work with teams that integrate field instrumentation into future lunar and Mars exploration missions,” said Zachary. “We go to analog field sites, places on Earth that are geologically similar to the Moon or Mars, to test field instruments.”Photo courtesy of Zachary Morse What brought you to Goddard?
      In January 2020, I came to Goddard to do a post-doctoral fellowship because I wanted to work on the Remote, In Situ, and Synchrotron Studies for Science and Exploration 2 (Rise2) project. We go into the field to test handheld geologic instruments that could later be incorporated into missions.
      What have been some of your favorite trips into the field?
      Iceland, Hawaii, and the New Mexico desert, which is our primary field site for Rise2. These were organized as part of the Goddard Instrument Field Team, a group that hosts trips each year to different analog field sites.
      The Iceland trip was my favorite because the place we got to explore looked almost exactly like pictures of the Moon’s surface. It was beautiful and the right setting to learn about the Earth and the Moon. Our team was about 40 people. We were there for two weeks. We mostly camped.
      It was definitely a unique experience, one hard to put in words. On Earth, you would normally go camping in a lush forest. But there were no trees, just rock and dust. It was absolutely beautiful in its own way.
      The Hawaii trip was also unique. Our team of about 30 people spent almost the entire 10 days in the lava tubes. Not many people get to go into lava tubes. It was very exciting. The biggest part of the lava tube was about 20 feet high and about 10 feet wide. The smallest was so small we had to crawl through.
      How do you document field work?
      In addition to scientific data, we always take pictures of the rocks and outcrops. It is important to document what a site is like before people interact with it. Sometimes we collect rock samples to bring back to the lab, but we leave the place as we found it.
      “I always knew that I wanted to study space,” said Zachary. “In college I started in engineering, but switched to geology because much of the science NASA does on the Moon or Mars involves studying the rocks.”Photo courtesy of Zachary Morse Where do you see yourself in five years?
      I hope to remain at Goddard; I love it. The team is great and the science is fascinating and important. I want to keep pursuing opportunities for field work. My main goal is to get involved in a lunar mission and support Artemis lunar exploration.
      What do you do for fun?
      I love the outdoors. I love kayaking on lakes, rivers, and streams. My favorite place is in the Adirondacks. I also love hiking, which I do all over, especially in West Virginia.
      Who is your mentor and what did your mentor teach you?
      Kelsey Young is my supervisor and mentor. She has taught me so many things including how missions will function and how we can best test equipment in the field for future missions. She taught me how to be organized and focused.
      Kelsey Young Dives Into Fieldwork With Aplomb Who inspires you?
      Jack Schmitt is an Apollo 17 astronaut who inspired me because he is a geologist. He was the first and only professional geologist who walked on the surface of the Moon during the Apollo missions. I have heard him speak many times and have personally met him.
      I would jump at the chance to be the next geologist-astronaut!
      What rock formations in the world would you like to explore?
      Top of my list would be to explore Acadia National Park in Maine. There is a ton of diverse geology in a small area and the pictures all look stunning. I would also love to visit Glacier National Park to experience the glacier before it melts.
      What is your “six-word memoir”? A six-word memoir describes something in just six words.
      Exploring Earth to prepare lunar missions.
      By Elizabeth M. Jarrell
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
      Share
      Details
      Last Updated Sep 03, 2024 EditorMadison OlsonContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
      People of Goddard Goddard Space Flight Center People of NASA Explore More
      5 min read Aaron Vigil Helps Give SASS to Roman Space Telescope
      Article 5 days ago 7 min read Tyler Parsotan Takes a Long Look at the Transient Universe with NASA’s Swift
      Article 2 weeks ago 7 min read Xiaoyi Li Engineers Instruments and the Teams that Get Them Done
      Instrument Systems Engineer Xiaoyi Li leads technical teams united by a common vision to achieve…
      Article 3 weeks ago View the full article
  • Check out these Videos

×
×
  • Create New...