Jump to content

The 1998 Florida Firestorm and NASA’s Kennedy Space Center


NASA

Recommended Posts

  • Publishers

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Lightning Strike at Kennedy Space Center in 2014
A lightning strike at Launch Complex 39B at NASA’s Kennedy Space Center in Florida in July 2014. Bolts like this are a regular occurrence in central Florida. Similar lightning strikes sparked the 1998 Florida Firestorm.
NASA

Lightning Crashes

East central Florida’s natural environment and climate have shaped, and delayed, Kennedy Space Center launch operations since the 1960s. Torrential pop-up thunderstorms, Atlantic hurricanes, roasting heat, and other climatic phenomena, including lightning and fire, repeatedly hampered mission timelines and created dangerous conditions for astronauts and workers.

Kennedy Space Center personnel understood the dangers of lightning strikes all too well by 1998. In 1969, two bolts famously struck the Apollo 12 launch vehicle shortly after liftoff. A few years earlier, a worker was killed when lightning hit a Kennedy launch pad. These and other events motivated NASA to install new lightning rods and create new launch procedures.

The opening segment of this video highlights the two lightning bolts that struck the Apollo 12 launch vehicle shortly after launch.

Fire in the Sky

Although NASA officials were familiar with the dangers lightning posed as the twenty-first century dawned, a 1998 lightning strike created an unprecedented environmental threat to Kennedy Space Center and its launch operations.

In May 1998, lightning sparked a fire in a wooded area of eastern central Florida. This lightning strike and fire were not extraordinary events. Quite the contrary. Over the course of central Florida’s long history, lightning regularly ignited wildfires in pine forests. These blazes were often short lived, but they served an important function. Namely, they burned off flammable undergrowth and rejuvenated Florida’s wilderness environments.

Aerial view of the 1998 Fire with billowing smoke
This photograph of an area of the 1998 Firestorm was taken from a NASA Huey UH-1 helicopter. The helicopter was outfitted with a Forward Looking Infrared Radar (FLIR) camera and a portable global positioning satellite (GPS) system to support Florida’s Division of Forestry as they fought the fire.
NASA

But the 1998 fire was different. Instead of a lightning strike creating a small fire, which rain and other natural conditions eventually extinguished, it grew into a colossal inferno dubbed the 1998 Firestorm. It was an inferno fed by other lightning sparked fires, a rainy winter, spring drought conditions, and fire suppression tactics.

Beginning in the mid-1900s, residents and fire officials in central Florida regularly extinguished wildfires before they had a chance to burn off flammable undergrowth. This led to a buildup of combustible material in the area’s woodlands. It was especially the case after a rainy winter season in early 1998 led to an abundance of low-lying vegetation. Fed by this tinder and a springtime drought, the summer fires spread quickly. They ultimately burned roughly 500,000 acres and created massive clouds of billowing smoke and other environmental hazards.

At one point the smoke from the fires was so thick, officials closed a 140-mile stretch of Interstate 95 and NASCAR officials postponed the annual 400-mile race at Daytona International Speedway, traditionally held on July 4th.

View from the backseat of a NASA Huey UH-1 helicopter showing a KSC Security Services employee pointing at a screen.
The scene inside a NASA Huey UH-1 helicopter while it flies over fires burning in Volusia County, Florida.
NASA

Battling the Blaze

In response to the flames, Brevard County fire official Jeffrey Mahoney publicly requested that Florida Governor Lawton Chiles provide more firefighters and resources. Mahoney argued, and many agreed, that the 500 firefighters valiantly battling the blaze in an effort to save homes and property were no match for the raging fire. “We are asking them to do the impossible,” Mahoney told a reporter during the early days of the fire.

We are asking them to do the impossible."

Jeffrey Mahoney

Jeffrey Mahoney

Brevard County Assistant Fire Chief

Understanding the severity of the situation, Governor Chiles and federal officials allocated more resources to fighting the fires. Ultimately, thousands of firefighters fought the blazes that raged throughout the state, including on Kennedy Space Center property.

Flames Threaten Kennedy

During the early weeks of the wildfire outbreak, NASA operations continued as usual. In early June, the agency successfully launched and landed STS-91. But ultimately the fires spread to center property and created operational concerns.

burnt trees and a smokey sky as seen on Kennedy property in June 1998
This photo of a burned wooded area on Kennedy property was taken on June 22, 1998. Around the time of this photo, fire threatened Kennedy Space Center’s South Repeater Building and other structures.
NASA

In late June, firefighters had to battle back a blaze that threatened the South Repeater Building, a fiber-optics relay station and storage facility on the south side of center property. By June 22, fires had burned 3,000 acres of the Merritt Island National Wildlife Refuge that surrounded Kennedy Space Center. The fire’s intensity and smoke even forced officials to temporarily close State Road 3.

Kennedy employee Lisa Braden was one of the last people to drive on the road before it was closed. “The smoke was so thick, you couldn’t see the road,” Braden told a reporter. “I went out on a job, and when I came back, the fire was crossing the street.”

Fortunately, by mid-July the arrival of long-hoped-for summer rains and successful fire control techniques helped extinguish most of the fires. Still, NASA launch officials remembered the firestorm in the weeks leading up to the October 1998 launch of STS-95.

Smoke and Shuttle Launches

It was in the shadows, or perhaps the smoke, of the fires that NASA created the STS-95 Flight Readiness Review. The document provides a window into the thinking and concerns of safety officials, launch controllers, NASA engineers, and more, just weeks before launch.

During the Shuttle Era, NASA’s readiness reviews accompanied the final readiness meeting the agency held two weeks before each launch. At this meeting, those involved in the mission ensured that earlier technical issues, and other concerns, had been satisfactorily resolved. Most importantly, a “go” or “no-go” launch decision was made at the end of this meeting.

Each readiness review document and meeting were unique. They each provide a window into the particulars of individual shuttle launches. The two Smoke Plume Rule diagrams in the STS-95 Flight Readiness Review, make it clear that launch officials had wildfire smoke on their minds.

Diagram entitled Smoke Plume Rule
This illustration is from the STS-95 Readiness Review. It reminded launch officials that a launch was a “no-go” if the shuttle was going to travel through a cumulus cloud attached to a smoke plume. Note the burning vegetation to the left of the shuttle.
NASA/Kennedy Space Center Archive
Diagram entitled Smoke Plum Rule where a smoke plume is not attached to a cumulus cloud
This second illustration is also from the STS-95 Flight Readiness Review. It highlights the part of the Smoke Plume Rule that states a shuttle should not be launched through a cumulus cloud that developed from a smoke plume, for at least 60 minutes after the cloud separates from the plume.
NASA/Kennedy Space Center Archive

STS-95 launched on a clear smoke-free day on October 29, 1998. Still, the charred Florida landscape Space Shuttle Discovery soared away from after liftoff stood as testament to the dangers of wildfire. With this in mind, officials took action to help ensure a fire event as widespread as the 1998 Firestorm never happened again.

Only You?

Since 1998, controlled burns have been regularly conducted throughout wooded areas of Florida and on Kennedy Space Center property. These prescribed burns were, in part, a legacy of the 1998 Firestorm. Along with prescribed burns, NASA developed and used other technologies and tactics to control wildfires on Kennedy property after 1998.

A helicopter dumps a large bucket of water on a forest
NASA used Huey UH-1 helicopters for security and medical evacuations before the 1998 fires. After the fires, NASA outfitted the helicopters with buckets designed to scoop up Florida coastal waters and drop them on wildfires. This photo, from 2000, shows a helicopter and bucket at work.
NASA

As the number of launches at Kennedy increases (in 2023 there were a record 72 orbital launches from Kennedy Space Center), and climate change makes severe weather more prevalent, prescribed burns and other wildfire control strategies are essential components of mission preparedness and environmental stewardship in and around the center.

Smokey the Bear at International Space Station in 2012
On May 15, 2012, Smokey the Bear traveled to the International Space Station with NASA astronaut Joe Acaba. As a recognized symbol for wildfire prevention, Smokey’s 2012 space adventure highlighted NASA initiatives dedicated to helping researchers better understand wildfires.
NASA

About the Author

Brad Massey

Brad Massey

NASA Historian

Brad Massey is a historian at NASA's Kennedy Space Center. His research focuses on NASA's earth science initiatives and Florida's environmental history.

Share

Details

Last Updated
Jun 25, 2024

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Hubble Space Telescope Home Hubble Examines a Busy… Missions Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More Online Activities   2 min read
      Hubble Examines a Busy Galactic Center
      This NASA/ESA Hubble Space Telescope image features the active spiral galaxy IC 4709. ESA/Hubble & NASA, M. Koss, A, Barth This NASA/ESA Hubble Space Telescope image features the spiral galaxy IC 4709a located around 240 million light-years away in the southern constellation Telescopium. Hubble beautifully captures its faint halo and swirling disk filled with stars and dust bands. The compact region at its core might be the most remarkable sight. It holds an active galactic nucleus (AGN).
      If IC 4709’s core just held stars, it wouldn’t be nearly as bright. Instead, it hosts a gargantuan black hole, 65 million times more massive than our Sun. A disk of gas spirals around and eventually into this black hole, crashing together and heating up as it spins. It reaches such high temperatures that it emits vast quantities of electromagnetic radiation, from infrared to visible to ultraviolet light and X-rays. A lane of dark dust, just visible at the center of the galaxy in the image above, obscures the AGN in IC 4709. The dust lane blocks any visible light emission from the nucleus itself. Hubble’s spectacular resolution, however, gives astronomers a detailed view of the interaction between the quite small AGN and its host galaxy. This is essential to understanding supermassive black holes in galaxies much more distant than IC 4709, where resolving such fine details is not possible.
      This image incorporates data from two Hubble surveys of nearby AGNs originally identified by NASA’s Swift telescope. There are plans for Swift to collect new data on these galaxies. Swift houses three multiwavelength telescopes, collecting data in visible, ultraviolet, X-ray, and gamma-ray light. Its X-ray component will allow SWIFT to directly see the X-rays from IC 4709’s AGN breaking through the obscuring dust. ESA’s Euclid telescope — currently surveying the dark universe in optical and infrared light — will also image IC 4709 and other local AGNs. Their data, along with Hubble’s, provides astronomers with complementary views across the electromagnetic spectrum. Such views are key to fully research and better understand black holes and their influence on their host galaxies.

      Download this image

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Sep 05, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Active Galaxies Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Missions Spiral Galaxies Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Galaxies



      Hubble Science Highlights



      Hubble E-books


      View the full article
    • By European Space Agency
      Image: ESA’s Metal 3D Printer has produced the first metal part ever created in space. 
      The technology demonstrator, built by Airbus and its partners, was launched to the International Space Station at the start of this year, where ESA astronaut Andreas Mogensen installed the payload in the European Drawer Rack of ESA’s Columbus module. In August, the printer successfully printed the first 3D metal shape in space.  
      This product, along with three others planned during the rest of the experiment, will return to Earth for quality analysis: two of the samples will go to ESA’s technical heart in the Netherlands (ESTEC), another will go to ESA’s astronaut training centre in Cologne (EAC) for use in the LUNA facility, and the fourth will go to the Technical University of Denmark (DTU). 
      As exploration of the Moon and Mars will increase mission duration and distance from Earth, resupplying spacecraft will be more challenging.  Additive manufacturing in space will give autonomy for the mission and its crew, providing a solution to manufacture needed parts, to repair equipment or construct dedicated tools, on demand during the mission, rather than relying on resupplies and redundancies. 
      ESA’s technology demonstrator is the first to successfully print a metal component in microgravity conditions. In the past, the International Space Station has hosted plastic 3D printers.
      View the full article
    • By NASA
      Credit: NASA NASA has awarded the Center, Operations Maintenance, and Engineering II contract to Jacobs Technology Inc. of Tullahoma, Tennessee, to support operations at the agency’s Langley Research Center in Hampton, Virginia.
      The contract is a cost-plus-fixed-fee indefinite-delivery/indefinite-quantity contract with a maximum potential value of $973.7 million. Following a phase-in period that starts Tuesday, Oct. 1 and runs to Dec. 31, the contract will have a base period of 15 months followed by five optional periods that could extend the contract to the end of 2035.
      Under this contract, Jacobs Technology will assist in crucial research operations, engineering, and maintenance services at NASA Langley to help the center continue its work to solve the mysteries of our home planet, solar system, and beyond. The firm also will provide institutional and research operations support, maintenance and engineering for the center’s facilities, and central utilities operations, among other services.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Share
      Details
      Last Updated Sep 05, 2024 LocationNASA Headquarters Related Terms
      Langley Research Center NASA Centers & Facilities View the full article
    • By NASA
      On the left, the Canopee transport carrier containing the European Service Module for NASA’s Artemis III mission arrives at Port Canaveral in Florida, on Tuesday, Sept. 3, 2024, before completing the last leg of its journey to the agency’s Kennedy Space Center’s Neil A. Armstrong Operations and Checkout via truck. On the right, NASA’s Pegasus barge, carrying several pieces of hardware for Artemis II, III, and IV arrives at NASA Kennedy’s Launch Complex 39 turn basin wharf on Thursday, Sept. 5, 2024. Credit: NASA From across the Atlantic Ocean and through the Gulf of Mexico, two ships converged, delivering key spacecraft and rocket components of NASA’s Artemis campaign to the agency’s Kennedy Space Center in Florida.
      On Sept. 3, ESA (European Space Agency) marked a milestone in the Artemis III mission as its European-built service module for NASA’s Orion spacecraft completed a transatlantic journey from Bremen, Germany, to Port Canaveral, Florida, where technicians moved it to nearby NASA Kennedy. Transported aboard the Canopée cargo ship, the European Service Module—assembled by Airbus with components from 10 European countries and the U.S.—provides propulsion, thermal control, electrical power, and water and oxygen for its crews.
      “Seeing multi-mission hardware arrive at the same time demonstrates the progress we are making on our Artemis missions,” said Amit Kshatriya, deputy associate administrator, Moon to Mars Program, at NASA Headquarters in Washington. “We are going to the Moon together with our industry and international partners and we are manufacturing, assembling, building, and integrating elements for Artemis flights.”
      NASA’s Pegasus barge, the agency’s waterway workhorse for transporting large hardware by sea, ferried multi-mission hardware for the agency’s SLS (Space Launch System) rocket, the Artemis II launch vehicle stage adapter, the “boat-tail” of the core stage for Artemis III, the core stage engine section for Artemis IV, along with ground support equipment needed to move and assemble the large components. The barge pulled into NASA Kennedy’s Launch Complex 39B Turn Basin Thursday.
      The spacecraft factory inside NASA Kennedy’s Neil Armstrong Operations and Checkout Building is set to buzz with additional activity in the coming months. With the Artemis II Orion crew and service modules stacked together and undergoing testing, and engineers outfitting the Artemis III and IV crew modules, engineers soon will connect the newly arrived European Service Module to the crew module adapter, which houses electronic equipment for communications, power, and control, and includes an umbilical connector that bridges the electrical, data, and fluid systems between the crew and service modules.
      The SLS rocket’s cone-shaped launch vehicle stage adapter connects the core stage to the upper stage and protects the rocket’s flight computers, avionics, and electrical devices in the upper stage system during launch and ascent. The adapter will be taken to Kennedy’s Vehicle Assembly Building in preparation for Artemis II rocket stacking operations.
      The boat-tail, which will be used during the assembly of the SLS core stage for Artemis III, is a fairing-like structure that protects the bottom end of the core stage and RS-25 engines. This hardware, picked up at NASA’s Michoud Assembly Facility in New Orleans, will join the Artemis III core stage engine section housed in the spaceport’s Space Systems Processing Facility.
      The Artemis IV SLS core stage engine section arrived from NASA Michoud and also will transfer to the center’s processing facility ahead of final assembly.
      Under the Artemis campaign, NASA will land the first woman, first person of color, and its first international partner astronaut on the lunar surface, establishing long-term exploration for scientific discovery and preparing for human missions to Mars. The agency’s SLS rocket and Orion spacecraft, and supporting ground systems, along with the human landing system, next-generation spacesuits and rovers, and Gateway, serve as NASA’s foundation for deep space exploration.
      For more information on NASA’s Artemis missions, visit:
      https://www.nasa.gov/artemis
      -end-
      Rachel Kraft
      Headquarters, Washington
      202-358-1600
      Rachel.h.kraft@nasa.gov
      Allison Tankersley, Antonia Jaramillo Botero
      Kennedy Space Center, Florida
      321-867-2468
      Allison.p.tankersley@nasa.gov/ antonia.jaramillobotero@nasa.gov
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A prototype of the Mini Potable Water Dispenser, currently in development at NASA’s Marshall Space Flight Center, is displayed alongside various food pouches during a demonstration at NASA’s Johnson Space Center. NASA/David DeHoyos NASA engineers are working hard to ensure no astronaut goes hungry on the Artemis IV mission.
      When international teams of astronauts live on Gateway, humanity’s first space station to orbit the Moon, they’ll need innovative gadgets like the Mini Potable Water Dispenser. Vaguely resembling a toy water soaker, it manually dispenses water for hygiene bags, to rehydrate food, or simply to drink. It is designed to be compact, lightweight, portable and manual, making it ideal for Gateway’s relatively small size and remote location compared to the International Space Station closer to Earth.
      The team at NASA’s Marshall Space Flight Center in Huntsville, Alabama leading the development of the dispenser understands that when it comes to deep space cuisine, the food astronauts eat is so much more than just fuel to keep them alive.
      “Food doesn’t just provide body nourishment but also soul nourishment,” said Shaun Glasgow, project manager at Marshall. “So ultimately this device will help provide that little piece of soul nourishment. After a long day, the crew can float back and enjoy some pasta or scrambled eggs, a small sense of normalcy in a place far from home.”
      As NASA continues to innovate and push the boundaries of deep space exploration, devices like the compact, lightweight dispenser demonstrate a blend of practicality and ingenuity that will help humanity chart its path to the Moon, Mars, and beyond.
      An engineer demonstrates the use of the Mini Potable Water Dispenser by rehydrating a food pouch during a testing session at Johnson Space Center on June 6, 2024. This compact, lightweight dispenser is designed to help astronauts prepare meals in deep space.NASA/David DeHoyos A close-up view of the Mini Potable Water Dispenser prototype during a testing demonstration at NASA’s Johnson Space Center on June 6, 2024.NASA/David DeHoyos NASA food scientists rehydrate a food pouch during a test of the Mini Potable Water Dispenser at Johnson Space Center on June 6, 2024. NASA/David DeHoyos A NASA food scientist captures video of the Mini Potable Water Dispenser during testing at Johnson Space Center.NASA/David DeHoyos Matt Rowell, an engineer from the Marshall Space Flight Center demonstrates the Mini Potable Water Dispenser to NASA food scientists during a testing session.NASA/David DeHoyos Project manager Shaun Glasgow (right) demonstrates the Mini Potable Water Dispenser. NASA/David DeHoyos Brett Montoya, a lead space architect in the Center for Design and Space Architecture at Johnson Space Center, rehydrates a package of food using the Mini Potable Water Dispenser.NASA/David DeHoyos Learn More about Gateway Facebook logo @NASAGateway @NASA_Gateway Instagram logo @nasaartemis Share
      Details
      Last Updated Sep 04, 2024 EditorBriana R. ZamoraContactBriana R. Zamorabriana.r.zamora@nasa.govLocationJohnson Space Center Related Terms
      Artemis Earth's Moon Exploration Systems Development Mission Directorate Gateway Program Gateway Space Station Johnson Space Center Marshall Space Flight Center Explore More
      2 min read Gateway: Energizing Exploration
      Discover the cutting-edge technology powering Gateway, humanity's first lunar space station.
      Article 2 weeks ago 3 min read Gateway: Up Close in Stunning Detail
      Witness Gateway in stunning detail with this video that brings the future of lunar exploration…
      Article 2 months ago 2 min read Earth to Gateway: Electric Field Tests Enhance Lunar Communication
      Learn how engineers at NASA's Johnson Space Center are using electric field testing to optimize…
      Article 1 month ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...