Jump to content

Gateway: Up Close in Stunning Detail


NASA

Recommended Posts

  • Publishers
A detailed 3D animation of NASA's Gateway space station, showcasing its modules and structural components from various angles against the backdrop of deep space.
NASA/Bradley Reynolds, Alberto Bertolin

NASA and its international partners will explore the scientific mysteries of deep space with Gateway, humanity’s first space station to orbit the Moon. Starting with the Artemis IV mission in 2028, the international teams of astronauts living, conducting science, and preparing for missions to the lunar South Pole region on Gateway will be the first humans to make their home in deep space.

This artist’s computer-generated animation presents an exterior tour of Gateway in stunning detail. Depicted Gateway elements are the:

  • Power and Propulsion Element that will make Gateway the most powerful solar electric spacecraft ever flown. The module will use the Sun’s energy to power the space station’s subsystems and ionize xenon gas to produce the thrust that will maintain Gateway’s unique polar orbit around the Moon.
  • HALO (Habitation and Logistics Outpost), Gateway’s command and control nexus providing communications between Earth and the lunar surface with the Lunar Link system provided by ESA (European Space Agency). HALO will house life support systems, including exercise equipment, and science payload banks.
  • Lunar I-Hab, provided by ESA with hardware contributions from JAXA (Japan Aerospace Exploration Agency), will host environmental control and life support systems, sleeping quarters, and a galley, among other features.
  • Lunar View, provided by ESA, will have refueling capabilities for the Power and Propulsion Element, cargo storage, and large windows.
  • Crew and Science Airlock, provided by the Mohammad Bin Rashid Space Centre of the United Arab Emirates, for crew and hardware transfer from Gateway’s interior to the vacuum of space.
  • Canadarm3 advanced external robotic system provided by CSA (Canadian Space Agency).
  • Deep Space Logistics spacecraft that will transport cargo to Gateway to support Artemis missions.
  • Initial Gateway science payloads that will study solar and cosmic radiation, a little-understood phenomenon that is a chief concern for people and hardware traveling through deep space, including Mars. The payloads visible in this video are ERSA (European Radiation Sensors Array), provided by ESA, attached to the Power and Propulsion Element, and the NASA-led HERMES (Heliophysics Environmental and Radiation Measurement Experiment Suite) is attached to HALO. A third radiation science payload, IDA (Internal Dosimeter Array), provided by ESA and JAXA, will be inside of HALO.

This video also depicts:

  • The Orion spacecraft docked to the Crew and Science Airlock. Orion will transport international teams of astronauts and three modules (Lunar I-Hab, Lunar View and the Crew and Science Airlock) to the Gateway space station.
  • Government-reference Human Landing System (HLS) that will ferry astronauts to and from the lunar South Pole region. SpaceX and Blue Origin are on contract to provide the Starship HLS and Blue Moon HLS, respectively.

Gateway is part of the Artemis architecture to return humans to the lunar surface for scientific discovery and chart a path for human exploration further into the solar system, such as to Mars and beyond.

Share

Details

Last Updated
Jun 25, 2024
Editor
Briana R. Zamora
Contact
Briana R. Zamora

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Less than two weeks after being launched into orbit, Sentinel-2C has delivered its first images. These spectacular views of Earth offer a sneak peek at the data that this new satellite will provide for Copernicus – Europe’s world-leading Earth observation programme.
      View the full article
    • By NASA
      NASA/Alberto Bertolin, Bradley Reynolds Immerse yourself in the future of deep space science exploration and download a 3D model of Gateway. Click, drag, and explore the exterior of the lunar space station from multiple angles.
      Launch the 3D Model International teams of astronauts will use Gateway, humanity’s first space station to orbit the Moon, to explore the scientific mysteries of deep space. Gateway is part of the Artemis campaign to return humans to the lunar surface for scientific discovery and chart a path for the first human missions to Mars.
      View the full article
    • By NASA
      NASA and Boeing welcomed Starliner back to Earth following the uncrewed spacecraft’s successful landing at 10:01 p.m. MDT Sept. 6, 2024, at the White Sands Space Harbor in New Mexico. Credit: NASA NASA and Boeing safely returned the uncrewed Starliner spacecraft following its landing at 10:01 p.m. MDT Sept. 6 at White Sands Space Harbor in New Mexico, concluding a three-month flight test to the International Space Station.
      “I am extremely proud of the work our collective team put into this entire flight test, and we are pleased to see Starliner’s safe return,” said Ken Bowersox, associate administrator, Space Operations Mission Directorate at NASA Headquarters in Washington. “Even though it was necessary to return the spacecraft uncrewed, NASA and Boeing learned an incredible amount about Starliner in the most extreme environment possible. NASA looks forward to our continued work with the Boeing team to proceed toward certification of Starliner for crew rotation missions to the space station.”
      The flight on June 5 was the first time astronauts launched aboard the Starliner. It was the third orbital flight of the spacecraft, and its second return from the orbiting laboratory. Starliner now will ship to NASA’s Kennedy Space Center in Florida for inspection and processing.
      NASA’s Commercial Crew Program requires a spacecraft to fly a crewed test flight to prove the system is ready for regular flights to and from the orbiting laboratory. Following Starliner’s return, the agency will review all mission-related data.
      “We are excited to have Starliner home safely. This was an important test flight for NASA in setting us up for future missions on the Starliner system,” said Steve Stich, manager of NASA’s Commercial Crew Program. “There was a lot of valuable learning that will enable our long-term success. I want to commend the entire team for their hard work and dedication over the past three months.”
      NASA astronauts Butch Wilmore and Suni Williams launched on June 5 aboard Starliner for the agency’s Boeing Crewed Flight Test from Cape Canaveral Space Force Station in Florida. On June 6, as Starliner approached the space station, NASA and Boeing identified helium leaks and experienced issues with the spacecraft’s reaction control thrusters. Following weeks of in-space and ground testing, technical interchange meetings, and agency reviews, NASA made the decision to prioritize safety and return Starliner without its crew. Wilmore and Williams will continue their work aboard station as part of the Expedition 71/72 crew, returning in February 2025 with the agency’s SpaceX Crew-9 mission.
      The crew flight test is part of NASA’s Commercial Crew Program. The goal of NASA’s Commercial Crew Program is safe, reliable, and cost-effective transportation to and from the International Space Station and low Earth orbit. This already is providing additional research time and has increased the opportunity for discovery aboard humanity’s microgravity testbed, including helping NASA prepare for human exploration of the Moon and Mars.
      Learn more about NASA’s Commercial Crew program at:
      https://www.nasa.gov/commercialcrew
      -end-
      Joshua Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Leah Cheshier
      Johnson Space Center, Houston
      281-483-5111
      leah.d.cheshier@nasa.gov
      Steve Siceloff / Danielle Sempsrott / Stephanie Plucinsky
      Kennedy Space Center, Florida
      321-867-2468
      steven.p.siceloff@nasa.gov / danielle.c.sempsrott@nasa.gov / stephanie.n.plucinsky@nasa.gov
      Share
      Details
      Last Updated Sep 07, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Commercial Crew International Space Station (ISS) ISS Research View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A prototype of the Mini Potable Water Dispenser, currently in development at NASA’s Marshall Space Flight Center, is displayed alongside various food pouches during a demonstration at NASA’s Johnson Space Center. NASA/David DeHoyos NASA engineers are working hard to ensure no astronaut goes hungry on the Artemis IV mission.
      When international teams of astronauts live on Gateway, humanity’s first space station to orbit the Moon, they’ll need innovative gadgets like the Mini Potable Water Dispenser. Vaguely resembling a toy water soaker, it manually dispenses water for hygiene bags, to rehydrate food, or simply to drink. It is designed to be compact, lightweight, portable and manual, making it ideal for Gateway’s relatively small size and remote location compared to the International Space Station closer to Earth.
      The team at NASA’s Marshall Space Flight Center in Huntsville, Alabama leading the development of the dispenser understands that when it comes to deep space cuisine, the food astronauts eat is so much more than just fuel to keep them alive.
      “Food doesn’t just provide body nourishment but also soul nourishment,” said Shaun Glasgow, project manager at Marshall. “So ultimately this device will help provide that little piece of soul nourishment. After a long day, the crew can float back and enjoy some pasta or scrambled eggs, a small sense of normalcy in a place far from home.”
      As NASA continues to innovate and push the boundaries of deep space exploration, devices like the compact, lightweight dispenser demonstrate a blend of practicality and ingenuity that will help humanity chart its path to the Moon, Mars, and beyond.
      An engineer demonstrates the use of the Mini Potable Water Dispenser by rehydrating a food pouch during a testing session at Johnson Space Center on June 6, 2024. This compact, lightweight dispenser is designed to help astronauts prepare meals in deep space.NASA/David DeHoyos A close-up view of the Mini Potable Water Dispenser prototype during a testing demonstration at NASA’s Johnson Space Center on June 6, 2024.NASA/David DeHoyos NASA food scientists rehydrate a food pouch during a test of the Mini Potable Water Dispenser at Johnson Space Center on June 6, 2024. NASA/David DeHoyos A NASA food scientist captures video of the Mini Potable Water Dispenser during testing at Johnson Space Center.NASA/David DeHoyos Matt Rowell, an engineer from the Marshall Space Flight Center demonstrates the Mini Potable Water Dispenser to NASA food scientists during a testing session.NASA/David DeHoyos Project manager Shaun Glasgow (right) demonstrates the Mini Potable Water Dispenser. NASA/David DeHoyos Brett Montoya, a lead space architect in the Center for Design and Space Architecture at Johnson Space Center, rehydrates a package of food using the Mini Potable Water Dispenser.NASA/David DeHoyos Learn More about Gateway Facebook logo @NASAGateway @NASA_Gateway Instagram logo @nasaartemis Share
      Details
      Last Updated Sep 04, 2024 EditorBriana R. ZamoraContactBriana R. Zamorabriana.r.zamora@nasa.govLocationJohnson Space Center Related Terms
      Artemis Earth's Moon Exploration Systems Development Mission Directorate Gateway Program Gateway Space Station Johnson Space Center Marshall Space Flight Center Explore More
      2 min read Gateway: Energizing Exploration
      Discover the cutting-edge technology powering Gateway, humanity's first lunar space station.
      Article 2 weeks ago 3 min read Gateway: Up Close in Stunning Detail
      Witness Gateway in stunning detail with this video that brings the future of lunar exploration…
      Article 2 months ago 2 min read Earth to Gateway: Electric Field Tests Enhance Lunar Communication
      Learn how engineers at NASA's Johnson Space Center are using electric field testing to optimize…
      Article 1 month ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      The powerhouse of Gateway, NASA’s orbiting outpost around the Moon and a critical piece of infrastructure for Artemis, is in the midst of several electric propulsion system tests.
      The Power and Propulsion Element (PPE), being manufactured by Maxar Technologies, provides Gateway with power, high-rate communications, and propulsion for maneuvers around the Moon and to transit between different orbits. The PPE will be combined with the Habitation and Logistic Outpost (HALO) before the integrated spacecraft’s launch, targeted for late 2024 aboard a SpaceX Falcon Heavy. Together, these elements will serve as the hub for early Gateway crewed operations and various science and technology demonstrations as the full Gateway station is assembled around it in the coming years.
      In this image, PPE engineers successfully tested the integration of Aerojet Rocketdyne’s thruster with Maxar’s power procession unit and Xenon Flow Controller.
      Image Credit: NASA
      View the full article
  • Check out these Videos

×
×
  • Create New...