Jump to content

NASA, Partners Conduct Fifth Asteroid Impact Exercise, Release Summary


NASA

Recommended Posts

  • Publishers
planetary-defense-meeting.jpg?w=1634
Representatives from NASA, FEMA, and the planetary defense community participate in the 5th Planetary Defense Interagency Tabletop Exercise to inform and assess our ability as a nation to respond effectively to the threat of a potentially hazardous asteroid or comet.
Credits: NASA/JHU-APL/Ed Whitman

For the benefit of all, NASA released a summary Thursday of the fifth biennial Planetary Defense Interagency Tabletop Exercise. NASA’s Planetary Defense Coordination Office, in partnership with FEMA (Federal Emergency Management Agency) and with the assistance of the U.S. Department of State Office of Space Affairs, convened the tabletop exercise to inform and assess our ability as a nation to respond effectively to the threat of a potentially hazardous asteroid or comet.

Although there are no known significant asteroid impact threats for the foreseeable future, hypothetical exercises provide valuable insights by exploring the risks, response options, and opportunities for collaboration posed by varying scenarios, from minor regional damage with little warning to potential global catastrophes predicted years or even decades in the future.

“The uncertainties in these initial conditions for the exercise allowed participants to consider a particularly challenging set of circumstances,” said Lindley Johnson, planetary defense officer emeritus NASA Headquarters in Washington. “A large asteroid impact is potentially the only natural disaster humanity has the technology to predict years in advance and take action to prevent.”

During the exercise, participants considered potential national and global responses to a hypothetical scenario in which a never-before-detected asteroid was identified that had, according to initial calculations, a 72% chance of hitting Earth in approximately 14 years. The preliminary observations described in the exercise, however, were not sufficient to precisely determine the asteroid’s size, composition, and long-term trajectory. To complicate this year’s hypothetical scenario, essential follow-up observations would have to be delayed for at least seven months – a critical loss of time – as the asteroid passed behind the Sun as seen from Earth’s vantage point in space.

Conducting exercises enable government stakeholders to identify and resolve potential issues as part of preparation for any real-world situation. It was held in April at the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, and brought together nearly 100 representatives from across U.S. government agencies and, for the first time, international collaborators on planetary defense.

“Our mission is helping people before, during, and after disasters,” said Leviticus “L.A.” Lewis, FEMA detailee to NASA’s Planetary Defense Coordination Office. “We work across the country every day before disasters happen to help people and communities understand and prepare for possible risks. In the event of a potential asteroid impact, FEMA would be a leading player in interagency coordination.” 

This exercise was the first to use data from NASA’s DART (Double Asteroid Redirection Test) mission, the first in-space demonstration of a technology for defending Earth against potential asteroid impacts. The DART spacecraft, which impacted the asteroid moonlet Dimorphos on Sept. 26, 2022, confirmed a kinetic impactor could change the trajectory of an asteroid. Applying this or any type of technology to an actual impact threat would require many years of advance planning.

To help ensure humanity will have the time needed to evaluate and respond to a potentially hazardous asteroid or comet, NASA continues the development of its NEO Surveyor (Near-Earth Object Surveyor), an infrared space telescope designed specifically to expedite our ability to discover and characterize most of the potentially hazardous near-Earth objects many years before they could become an impact threat. The agency’s NEO Surveyor’s proposed launch date is set for June 2028.

NASA will publish a complete after-action report for the tabletop exercise later, which will include strengths and gaps identified from analysis of the response, other discussions during the exercise, and recommendations for improvement.

“These outcomes will help to shape future exercises and studies to ensure NASA and other government agencies continue improving planetary defense preparedness,” said Johnson.

NASA established the Planetary Defense Coordination Office in 2016 to manage the agency’s ongoing planetary-defense efforts. Johns Hopkins APL managed the DART mission for NASA as a project of the agency’s Planetary Missions Program Office.

To learn more about planetary defense at NASA, visit:

https://science.nasa.gov/planetary-defense/

-end-

Charles Blue / Karen Fox
Headquarters, Washington 
202-802-5345 / 202-358-1600
charles.e.blue@nasa.gov / karen.fox@nasa.gov

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA and Boeing welcomed Starliner back to Earth following the uncrewed spacecraft’s successful landing at 10:01 p.m. MDT Sept. 6, 2024, at the White Sands Space Harbor in New Mexico. Credit: NASA NASA and Boeing safely returned the uncrewed Starliner spacecraft following its landing at 10:01 p.m. MDT Sept. 6 at White Sands Space Harbor in New Mexico, concluding a three-month flight test to the International Space Station.
      “I am extremely proud of the work our collective team put into this entire flight test, and we are pleased to see Starliner’s safe return,” said Ken Bowersox, associate administrator, Space Operations Mission Directorate at NASA Headquarters in Washington. “Even though it was necessary to return the spacecraft uncrewed, NASA and Boeing learned an incredible amount about Starliner in the most extreme environment possible. NASA looks forward to our continued work with the Boeing team to proceed toward certification of Starliner for crew rotation missions to the space station.”
      The flight on June 5 was the first time astronauts launched aboard the Starliner. It was the third orbital flight of the spacecraft, and its second return from the orbiting laboratory. Starliner now will ship to NASA’s Kennedy Space Center in Florida for inspection and processing.
      NASA’s Commercial Crew Program requires a spacecraft to fly a crewed test flight to prove the system is ready for regular flights to and from the orbiting laboratory. Following Starliner’s return, the agency will review all mission-related data.
      “We are excited to have Starliner home safely. This was an important test flight for NASA in setting us up for future missions on the Starliner system,” said Steve Stich, manager of NASA’s Commercial Crew Program. “There was a lot of valuable learning that will enable our long-term success. I want to commend the entire team for their hard work and dedication over the past three months.”
      NASA astronauts Butch Wilmore and Suni Williams launched on June 5 aboard Starliner for the agency’s Boeing Crewed Flight Test from Cape Canaveral Space Force Station in Florida. On June 6, as Starliner approached the space station, NASA and Boeing identified helium leaks and experienced issues with the spacecraft’s reaction control thrusters. Following weeks of in-space and ground testing, technical interchange meetings, and agency reviews, NASA made the decision to prioritize safety and return Starliner without its crew. Wilmore and Williams will continue their work aboard station as part of the Expedition 71/72 crew, returning in February 2025 with the agency’s SpaceX Crew-9 mission.
      The crew flight test is part of NASA’s Commercial Crew Program. The goal of NASA’s Commercial Crew Program is safe, reliable, and cost-effective transportation to and from the International Space Station and low Earth orbit. This already is providing additional research time and has increased the opportunity for discovery aboard humanity’s microgravity testbed, including helping NASA prepare for human exploration of the Moon and Mars.
      Learn more about NASA’s Commercial Crew program at:
      https://www.nasa.gov/commercialcrew
      -end-
      Joshua Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Leah Cheshier
      Johnson Space Center, Houston
      281-483-5111
      leah.d.cheshier@nasa.gov
      Steve Siceloff / Danielle Sempsrott / Stephanie Plucinsky
      Kennedy Space Center, Florida
      321-867-2468
      steven.p.siceloff@nasa.gov / danielle.c.sempsrott@nasa.gov / stephanie.n.plucinsky@nasa.gov
      Share
      Details
      Last Updated Sep 07, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Commercial Crew International Space Station (ISS) ISS Research View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The HASP 1.0 (High-Altitude Student Platform) scientific balloon mission launched Sept. 4, 2024, during NASA’s fall balloon campaign in Fort Sumner, N.M.NASA/Erin Reed NASA’s Scientific Balloon Program’s fifth balloon mission of the 2024 fall campaign took flight Wednesday, Sept. 4, 2024, from the agency’s Columbia Scientific Balloon Facility in Fort Sumner, New Mexico. The HASP 1.0 (High-Altitude Student Platform) mission remained in flight over 11 hours before it safely touched down. Recovery is underway.
      HASP is a partnership among the Louisiana Space Grant Consortium, the Astrophysics Division of NASA’s Science Mission Directorate, and the agency’s Balloon Program Office and Columbia Scientific Balloon Facility. The HASP platform supports up to 12 student-built payloads and is designed to flight test compact satellites, prototypes, and other small experiments. Since 2006, HASP has engaged more than 1,600 undergraduate and graduate students involved in the missions.
      Teams participating in the 2024 HASP 1.0 flight included: University of North Florida and University of North Dakota; Arizona State University; Louisiana State University; University of Colorado Boulder; College of the Canyons; Fort Lewis College; Capitol Technical College; University of Arizona; Universidad Nacional de Ingeniería (Peru); and McMaster University (Canada).
      A new, larger version of the High-Altitude Student Platform (HASP 2.0) had its engineering test flight a few days prior. HASP 2.0 will be able to accommodate twice as many student experiments as HASP 1.0 once operational in the next year.
      The remaining three balloon flights scheduled for the 2024 Fort Sumner fall campaign await next launch opportunities. To follow the missions, visit NASA’s Columbia Scientific Balloon Facility website for real-time updates on balloons altitudes and GPS locations during flight.
      For more information on NASA’s Scientific Balloon Program, visit:
      https://www.nasa.gov/scientificballoons
      Share
      Details
      Last Updated Sep 06, 2024 EditorOlivia F. LittletonContactOlivia F. Littletonolivia.f.littleton@nasa.gov Related Terms
      Learning Resources Scientific Balloons Wallops Flight Facility View the full article
    • By NASA
      The Roscosmos Soyuz MS-26 spacecraft will launch from the Baikonur Cosmodrome in Kazakhstan to the International Space Station with (pictured left to right) NASA astronaut Don Pettit and Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner.Credit: Gagarin Cosmonaut Training Center NASA astronaut Don Pettit will launch aboard the Roscosmos Soyuz MS-26 spacecraft, accompanied by cosmonauts Alexey Ovchinin and Ivan Vagner, to the International Space Station where they will join the Expedition 71 crew in advancing scientific research.
      Pettit, Ovchinin, and Vagner will lift off at 12:23 p.m. EDT Wednesday, Sept. 11 (9:23 p.m. Baikonur time) from the Baikonur Cosmodrome in Kazakhstan.
      Coverage will stream on NASA+, the NASA app, and the agency’s website. Learn how to stream NASA content through a variety of platforms including social media.
      After a two-orbit, three-hour trajectory to the station, the spacecraft will automatically dock at 3:33 p.m. at the orbiting laboratory’s Rassvet module. Shortly after, hatches will open between the spacecraft and the station.
      Once aboard, the trio will join NASA astronauts Tracy C. Dyson, Mike Barratt, Matthew Dominick, Jeanette Epps, Butch Wilmore, and Suni Williams, as well as Roscosmos cosmonauts Nikolai Chub, Alexander Grebenkin, and Oleg Kononenko.
      NASA’s coverage is as follows (all times Eastern and subject to change based on real-time operations):
      11:15 a.m. – Launch coverage begins on NASA+, the NASA app, YouTube, and the agency’s website.
      12:23 p.m. – Launch
      2:30 p.m. – Rendezvous and docking coverage begins on NASA+, the NASA app, YouTube, and the agency’s website.
      3:33 p.m. – Docking
      5:30 p.m. – Hatch opening and welcome remarks coverage begins on NASA+, the NASA app, YouTube, and the agency’s website.
      5:50 p.m. – Hatch opening
      The trio will spend approximately six months aboard the orbital laboratory as Expedition 71 and 72 crew members before returning to Earth in the spring of 2025. This will be the fourth spaceflight for Pettit and Ovchinin, and the second for Vagner.
      For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge, and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA is focusing more resources on deep space missions to the Moon as part of Artemis in preparation for future human missions to Mars.
      Learn more about International Space Station research and operations at:
      https://www.nasa.gov/station
      -end-
      Joshua Finch / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Sep 06, 2024 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Astronauts Donald R. Pettit Humans in Space ISS Research Johnson Space Center View the full article
    • By Space Force
      The exercise was designed to prepare S4S for its wartime mission and involved tailored participation from subordinate units to refine and validate S4S’s organizational concepts of operational employment.

      View the full article
    • By European Space Agency
      In 2022 NASA’s DART spacecraft made history, and changed the Solar System forever, by impacting the Dimorphos asteroid and measurably shifting its orbit around the larger Didymos asteroid. In the process a plume of debris was thrown out into space.
      The latest modelling, available on the preprint server arXiv and accepted for publication in the September volume of The Planetary Science Journal, shows how small meteoroids from that debris could eventually reach both Mars and Earth – potentially in an observable (although quite safe) manner.
      View the full article
  • Check out these Videos

×
×
  • Create New...